scholarly journals Nexus Between Immune Responses and Oxidative Stress: The Role of Dietary Hydrolyzed Lignin in ex vivo Bovine Peripheral Blood Mononuclear Cell Response

2020 ◽  
Vol 7 ◽  
Author(s):  
Maria Giovanna Ciliberti ◽  
Marzia Albenzio ◽  
Pasquale De Palo ◽  
Antonella Santillo ◽  
Mariangela Caroprese
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Binata Joddar ◽  
Rashmeet K Reen ◽  
Michael Firstenberg ◽  
Keith J Gooch

Vessels cultured ex vivo maintain viability and vasoactivity for weeks and can remodel in response to mechanical cues. When cultured in the presence of 5% CO2/balance air veins develop neointimal hyperplasia (IH) while arteries do not suggesting that exposure to significant increases in pO2 levels might stimulate IH. Neointimal hyperplasia (IH) is a known mechanism by which saphenous veins have a decreased patency compared to arterial conduits when used for coronary artery bypass. We sought to explore the role of oxygen tension and oxidative stress in IH. Test the hypothesis that exposure of human saphenous veins (HSV) to arterial pO2 stimulates IH via ROS-mediated pathways. Almost 40 HSV remnants acquired following CABG were cultured ex vivo with arterial (~95mmHg) pO2 or venous (~40mmHg) pO2 for 14 days. All differences reported have a p<0.05 via Student’s t-test. Results: HSV cultured at arterial pO2 exhibited significant IH as evidenced by disruption of the IEL, invasion of cells from the media, and a 2.8-fold greater intimal area than fresh HSV, a 5.8-fold increase in cell proliferation compared to fresh HSV, increased ROS levels and oxidative stress as evidenced by 4-fold increase in 4-HNE level (a marker of oxidative stress), increased DHE staining (indicative of superoxide generation), and a progressive increase in total ROS levels with time as assessed by DCF fluorescence, and a 3-fold increase in phosphorylated p38-MAPK, which is implicated in SMC proliferation. In stark contrast vessels culture at arterial pO2, HSV cultured with venous pO2 did not develop increased IH and were indistinguishable from fresh vessels with respect to proliferation, markers of oxidative stress, and MAPK expression levels. Supplementing culture medium with antioxidants including Tiron or NAC blocked the pO2-induced changes. These data indicate that exposure to arterial pO2 increases cellular proliferation and stimulates IH, potentially via oxidative stress or ROS signaling and also suggest that exposure to elevated arterial pO2 might stimulate pathological remodeling of veins grafted into the arterial circulation. This research has received full or partial funding support from the American Heart Association, AHA Great Rivers Affiliate (Delaware, Kentucky, Ohio, Pennsylvania & West Virginia).


Sign in / Sign up

Export Citation Format

Share Document