scholarly journals RNA-Seq Whole Transcriptome Analysis of Bovine Mammary Epithelial Cells in Response to Intracellular Staphylococcus aureus

2020 ◽  
Vol 7 ◽  
Author(s):  
Xiaozhou Wang ◽  
Feng Su ◽  
Xiaohui Yu ◽  
Na Geng ◽  
Liping Li ◽  
...  

Staphylococcus aureus (S. aureus), a common mastitis pathogen widespread in the natural environment of dairy farms, is capable of invading mammary epithelial cells making treatment difficult. However, the mechanism of the response of bovine mammary epithelial cell to S. aureus invasion remains elusive. In this study, transcriptomic analysis and bioinformatics tools were applied to explore the differentially expressed RNAs in bovine mammary epithelial cells (bMECs) between the control and S. aureus-treated group. A total of 259 differentially expressed mRNAs (DEmRNAs), 27 differentially expressed microRNAs (DEmiRNAs), and 21 differentially expressed long non-coding RNAs (DElncRNAs) were found. These RNAs mainly enrich the inflammatory response, immune response, endocytosis, and cytokine-cytokine receptor interaction. qRT-PCR was used to analyze the quality of the RNA-seq results. In particular, to the defense mechanism of bovine mammary epithelial cells against intracellular S. aureus, the PPAR signaling pathway and the genes (ACOX2, CROT, and NUDT12) were found to be up-regulated to promote the production of peroxisomes and ROS, DRAM1 expression was also up-regulated to facilitate the activation of autophagy, indicating that the above mechanisms were involved in the elimination of intracellular S. aureus in bovine mammary epithelial cells.

Author(s):  
Zhi Chen ◽  
Yi Zhang ◽  
Jingpeng Zhou ◽  
Yu Tian ◽  
Qiaoni Zhou ◽  
...  

Abstract Background Effective prevention and treatment of cow mastitis can provide a good guarantee for the healthy growth of cows and the qualified production of dairy products. The main purpose of this study was to explore the effect of tea tree oil on lipopolysaccharide (LPS) -induced mastitis in dairy cows, and the key gene in LPS -stimulated bovine mammary epithelial cells (BMECs) was identified. Results In this study, a model of mastitis induced by LPS was constructed, to which tea tree oil and LPS were added. The protective effects of tea tree oil on LPS-induced mastitis in BMECs were verified by the CCK-8 method, flow cytometry, real-time fluorescence quantitative detection, ELISA and other methods. The results showed that LPS at a concentration of 200 μg/ml could reduce the proliferative activity of the cells, induce a high proportion of apoptosis, and promote the expression of TNF-α, IL-6 and STAT1. Upon addition of tea tree oil, the proportion of apoptosis was reduced, and the expression of NF-κB, MAPK and caspase-3 was inhibited. Mammary epithelial cells were compared under control and LPS-treatment conditions and analyzed by second-generation sequencing. A total of 1270 mRNAs were identified as differentially expressed, of which 787 genes were upregulated and 483 were downregulated. These differentially expressed genes include TNF - α, IL6, STAT1, mapk4, etc. H&E staining and immunohistochemistry were used to verify the function of candidate genes. TNF-α and IL6 were observed to play important roles in mediating the preventive effect of tea tree oil on mastitis in LPS-stimulated bovine mammary epithelial cells. Conclusions The results showed that tea tree oil had a protective effect against LPS-induced mastitis. TNF - α and IL6 may be the marker genes of LPS-induced mastitis which provided a theoretical basis and experimental support for further research to determine new strategies for the prevention and treatment of mastitis and improvement of milk quality.


2020 ◽  
Vol 7 ◽  
Author(s):  
Marisol Báez-Magaña ◽  
Nayeli Alva-Murillo ◽  
Ivan Medina-Estrada ◽  
María Teresa Arceo-Martínez ◽  
Joel E. López-Meza ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0234939 ◽  
Author(s):  
Lucia Martinez Cuesta ◽  
Juan Pedro Liron ◽  
María Victoria Nieto Farias ◽  
Guillermina Laura Dolcini ◽  
Maria Carolina Ceriani

2012 ◽  
Vol 79 (3) ◽  
pp. 877-885 ◽  
Author(s):  
Damien S. Bouchard ◽  
Lucie Rault ◽  
Nadia Berkova ◽  
Yves Le Loir ◽  
Sergine Even

ABSTRACTStaphylococcus aureusis a major pathogen that is responsible for mastitis in dairy herds.S. aureusmastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability ofS. aureusto invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability ofLactobacillus caseistrains to prevent invasion of bMEC by twoS. aureusbovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively.L. caseistrains affected adhesion and/or internalization ofS. aureusin a strain-dependent manner. Interestingly,L. caseiCIRM-BIA 667 reducedS. aureusNewbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two otherL. caseistrains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate ofS. aureuswas not affected byL. casei. It should be noted thatL. caseiwas internalized at a low rate but survived in bMEC cells with a better efficiency than that ofS. aureusRF122. Inhibition ofS. aureusadhesion was maintained with heat-killedL. casei, whereas contact between liveL. caseiandS. aureusor bMEC was required to preventS. aureusinternalization. This first study of the antagonism of LAB towardS. aureusin a mammary context opens avenues for the development of novel control strategies against this major pathogen.


Sign in / Sign up

Export Citation Format

Share Document