scholarly journals Thermal Image Scanning for the Early Detection of Fever Induced by Highly Pathogenic Avian Influenza Virus Infection in Chickens and Ducks and Its Application in Farms

2021 ◽  
Vol 8 ◽  
Author(s):  
Jin-Yong Noh ◽  
Kyu-Jik Kim ◽  
Sun-Hak Lee ◽  
Jun-Beom Kim ◽  
Deok-Hwan Kim ◽  
...  

Highly pathogenic avian influenza (HPAI) is considered as one of the most devastating poultry diseases. It is imperative to immediately report any known outbreaks to the World Organization for Animal Health. Early detection of infected birds is of paramount importance to control virus spread, thus minimizing the associated economic loss. In this study, thermal imaging camera devices were used to detect change in the maximum surface temperature (MST) of chickens (n = 5) and ducks (n = 2) as an early indicator of experimental HPAI infection. The MST of both chickens and ducks increased at least 24 h before the manifestation of clinical signs of HPAI infection, depending on the severity of the infection. The basal MST was recorded for broiler chickens housed under small pen and normal farm conditions without intentional infection. A threshold cutoff of MST was established based on the circadian rhythm of normal MST. This study suggests that thermal imaging of chickens and ducks is a promising tool to screen any potential HPAI-infected flock in order to expedite HPAI diagnosis.

Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 489
Author(s):  
Saki Sakuma ◽  
Yuko Uchida ◽  
Momoyo Kajita ◽  
Taichiro Tanikawa ◽  
Junki Mine ◽  
...  

On 5 November 2020, a confirmed outbreak due to an H5N8 highly pathogenic avian influenza virus (HPAIV) occurred at an egg-hen farm in Kagawa prefecture (western Japan). This virus, A/chicken/Kagawa/11C/2020 (Kagawa11C2020), was the first HPAI poultry isolate in Japan in 2020 and had multiple basic amino acids—a motif conferring high pathogenicity to chickens—at the hemagglutinin cleavage site. Mortality of chickens was 100% through intravenous inoculation tests performed according to World Organization for Animal Health criteria. Phylogenetic analysis showed that the hemagglutinin of Kagawa11C2020 belongs to clade 2.3.4.4B of the H5 Goose/Guangdong lineage and clusters with H5N8 HPAIVs isolated from wild bird feces collected in Hokkaido (Japan) and Korea in October 2020. These H5N8 HPAIVs are closely related to H5N8 HPAIVs isolated in European countries during the winter of 2019–2020. Intranasal inoculation of chickens with 106 fifty-percent egg infectious doses of Kagawa11C2020 revealed that the 50% chicken lethal dose was 104.63 and the mean time to death was 134.4 h. All infected chickens demonstrated viral shedding beginning on 2 dpi—before clinical signs were observed. These results suggest that affected chickens could transmit Kagawa11C2020 to surrounding chickens in the absence of clinical signs for several days before they died.


2019 ◽  
Vol 2019 ◽  
pp. 1-5 ◽  
Author(s):  
Marc K. Kouam ◽  
Honorine N. Tchouankui ◽  
Arouna Njayou Ngapagna

The epidemiology of avian influenza is unknown in Cameroon despite the two outbreaks that occurred in 2006 and 2016-2017, respectively. In order to fill the gap, an attempt was made to provide some basic information on the epidemiology of highly pathogenic avian influenza in Cameroon. Thus, data were collected from follow-up reports of the second HPAI outbreaks prepared by the veterinary health officials of Cameroon and sent to the World Organisation for Animal Health (OIE). Two HPAI virus strains (H5N1 and H5N8) turned out to occur, with H5N1 virus involved in the Center, South, West, and Adamawa regions outbreaks and H5N8 involved in the Far North outbreak only. The affected hosts were the laying hens, backyard chickens, turkeys, guinea fowls, ducks, broiler and layer breeders, and geese for the H5N1 virus and the Indian peafowl (Pavo cristatus), pigeon, ducks, backyard chickens, and guinea fowls for the H5N8 virus. The first outbreak took place in Mvog-Betsi poultry complex in the Center region on the 20th May 2016 and spread to other regions. The mortality rate varied from 8% to 72% for H5N1 virus and was 96.26% for the H5N8 strain in Indian peafowl. No human case was recorded. The potential supporting factors for disease dissemination identified on the field were the following: poultry and eggs dealers moving from one farm, market, or town to another without any preventive care; poor biosecurity measures on farms and live poultry markets. After the first HPAI H5N1 virus outbreak in 2006, the second HPAI outbreak ten years later (2016-2017) involving two virus strains is a cause of concern for the poultry industry. The Cameroon Epidemio-Surveillance Network needs to be more watchful.


2021 ◽  
Author(s):  
Periyasamy Vijayakumar ◽  
Ashwin Ashok Raut ◽  
Santhalembi Chingtham ◽  
Harshad V Murugkar ◽  
Diwakar D. Kulkarni ◽  
...  

Abstract Elucidation of molecular pathogenesis underlying virus-host interaction is important for the development of new diagnostic and therapeutic strategies against highly pathogenic avian influenza (HPAI) infection in chicken. However, chicken HPAI viral pathogenesis is not completely understood. To elucidate the intracellular signaling pathways and critical host proteins associated with influenza pathogenesis, we characterized the lung proteome of chicken infected with HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala). The chicken mass spectra data sets comprised1, 47, 451 MS scans and 19, 917 MS/MS scans. At local FDR 5% level, we identified total 3313 chicken proteins with presence of at least one unique peptide. At 12 hrs, 247 proteins are downregulated while 1754 proteins are downregulated at 48 hrs indicating that the host has succumbed to infection. There is expression of proteins of the predominant signaling pathways, such as TLR, RLR, NLR and JAK-STAT signaling. Activation of these pathways is associated with cytokine storm effect and thus may be the cause of severity of HPAI H5N1 infection in chicken. Further we identified proteins like MyD88, IKBKB, IRAK4, RELA, and MAVS involved in the critical signaling pathways and some other novel proteins (HNF4A, ELAVL1, FN1, COPS5, CUL1, BRCA1 and FYN) as main hub proteins that might play important roles in influenza pathogenesis in chicken. Taken together, we characterized the signaling pathways and the proteomic determinants responsible for disease pathogenesis in chicken infected with HPAI H5N1 virus.


Author(s):  
Keiichi Taniguchi ◽  
Yoshinori Ando ◽  
Masanori Kobayashi ◽  
Shinsuke Toba ◽  
Haruaki Nobori ◽  
...  

Human infections with the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threatens public health. The susceptibility of HPAIVs to baloxavir acid (BXA), which is a new class of inhibitor for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but has not yet been characterized fully. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants in vitro was assessed. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested to those of seasonal and other zoonotic strains. BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate; A/Hong Kong/483/1997 (H5N1) strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, followed by prevention of acute lung inflammation and improvement of mortality compared with oseltamivir phosphate (OSP). Furthermore, combination treatments with BXM and OSP, using a 48-hour delayed treatment model showed a more potent effect on viral replication in organs, accompanied by improved survival compared to BXM or OSP monotherapy. From each test, no resistant virus (e.g., I38T in the PA) emerged in any BXM-treated mouse. These results therefore support the conclusion that BXM has potent antiviral efficacy against H5 HPAIV infections.


2020 ◽  
Vol 33 (1) ◽  
pp. 124-128
Author(s):  
Tanjin T. Mumu ◽  
Mohammed Nooruzzaman ◽  
Azmary Hasnat ◽  
Rokshana Parvin ◽  
Emdadul H. Chowdhury ◽  
...  

A mixed-aged flock of 130 turkeys in Bangladesh reported the sudden death of 1 bird in September 2017. Highly pathogenic avian influenza A(H5N1) virus was detected in 3 turkeys, and phylogenetic analysis placed the viruses in the reassortant clade 2.3.2.1a. The birds had clinical signs of depression, diarrhea, weakness, closed eyes, and finally death. The mortality rate of the flock was 13% over the 6 d prior to the flock being euthanized. At autopsy, we observed congestion in lungs and brain, hemorrhages in the trachea, pancreas, breast muscle, coronary fat, intestine, bursa of Fabricius, and kidneys. Histopathology revealed hemorrhagic pneumonia, hemorrhages in the liver and kidneys, and hemorrhages and necrosis in the spleen and pancreas. Significant changes in the brain included gliosis, focal encephalomalacia and encephalitis, and neuronophagia.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1290
Author(s):  
Michael G. Walsh ◽  
Siobhan M. Mor ◽  
Shah Hossain

Highly pathogenic avian influenza (HPAI) virus, subtype H5N1, constitutes one of the world’s most important health and economic concerns given the catastrophic impact of epizootics on the poultry industry, the high mortality attending spillover in humans, and its potential as a source subtype for a future pandemic. Nevertheless, we still lack an adequate understanding of HPAI H5N1 epidemiology and infection ecology. The nature of the wild waterfowl–poultry interface, and the sharing of diverse wetland habitat among these birds, currently underscore important knowledge gaps. India has emerged as a global hotspot for HPAI H5N1, while also providing critical wintering habitat for many species of migratory waterfowl and year-round habitat for several resident waterfowl species. The current study sought to examine the extent to which the wild waterfowl–poultry interface, varied wetland habitat, and climate influence HPAI H5N1 epizootics in poultry in India. Using World Organisation for Animal Health reported outbreaks, this study showed that the wild waterfowl–poultry interface and lacustrine, riparian, and coastal marsh wetland systems were strongly associated with landscape suitability, and these relationships varied by scale. Although increasing poultry density was associated with increasing risk, this was only the case in the absence of wild waterfowl habitat, and only at a local scale. In landscapes increasingly shared between wild waterfowl and poultry, suitability was greater among lower density poultry, again at a local scale only. These findings provide further insight into the occurrence of HPAI H5N1 in India and suggest important landscape targets for blocking the waterfowl–poultry interface to interrupt virus transmission and prevent future outbreaks.


Sign in / Sign up

Export Citation Format

Share Document