scholarly journals Differential DNA Methylation and Gene Expression Between ALV-J-Positive and ALV-J-Negative Chickens

2021 ◽  
Vol 8 ◽  
Author(s):  
Yiming Yan ◽  
Huihua Zhang ◽  
Shuang Gao ◽  
Huanmin Zhang ◽  
Xinheng Zhang ◽  
...  

Background: Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus that causes serious economic losses in the poultry industry; unfortunately, there is no effective vaccine against ALV-J. DNA methylation plays a crucial role in several biological processes, and an increasing number of diseases have been proven to be related to alterations in DNA methylation. In this study, we screened ALV-J-positive and -negative chickens. Subsequently, we generated and provided the genome-wide gene expression and DNA methylation profiles by MeDIP-seq and RNA-seq of ALV-J-positive and -negative chicken samples; 8,304 differentially methylated regions (DMRs) were identified by MeDIP-seq analysis (p ≤ 0.005) and 515 differentially expressed genes were identified by RNA-seq analysis (p ≤ 0.05). As a result of an integration analysis, we screened six candidate genes to identify ALV-J-negative chickens that possessed differential methylation in the promoter region. Furthermore, TGFB2 played an important role in tumorigenesis and cancer progression, which suggested TGFB2 may be an indicator for identifying ALV-J infections.

2020 ◽  
Author(s):  
Yiming Yan ◽  
Huihua Zhang ◽  
Shuang Gao ◽  
Huanmin Zhang ◽  
Xinheng Zhang ◽  
...  

Abstract BackgroundAvian leukosis virus subgroup J (ALV-J) is an oncogenic virus that causes serious economic losses in the poultry industry; unfortunately, there is no effective vaccine. Therefore, ALV-J-susceptible and -resistant chickens had been screened in this study. DNA methylation plays a crucial role in several biological processes, and an increasing number of diseases were proven to be related to alterations of DNA methylation. Thus, we generated and provide the genome wide genome-expression and DNA-methylation profiles by MeDIP-Seq and RNA-Seq in ALV-J-susceptible and -resistant chickens.Results8304 DMRs were identified by MeDIP-Seq analyses and 515 differentially expressed genes were identified by RNA-Seq analysis. Through the results of integration analysis, we screened six candidate genes for screening ALV-J-resistant chickens that were aberrant methylation in the promoter region. Furthermore, functional analyses showed that overexpression of TGFB2 promoted ALV-J replication, which suggested TGFB2 played an important role in disease resistance to ALV-J infection in chickens.ConclusionsThe present study provides new insights into understanding epigenetic changes in ALV-J-susceptible and -resistant chickens, and results provide a basis for breeding disease-resistant-chicken lines.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Verônica R. de Melo Costa ◽  
Julianus Pfeuffer ◽  
Annita Louloupi ◽  
Ulf A. V. Ørom ◽  
Rosario M. Piro

Abstract Background Introns are generally removed from primary transcripts to form mature RNA molecules in a post-transcriptional process called splicing. An efficient splicing of primary transcripts is an essential step in gene expression and its misregulation is related to numerous human diseases. Thus, to better understand the dynamics of this process and the perturbations that might be caused by aberrant transcript processing it is important to quantify splicing efficiency. Results Here, we introduce SPLICE-q, a fast and user-friendly Python tool for genome-wide SPLICing Efficiency quantification. It supports studies focusing on the implications of splicing efficiency in transcript processing dynamics. SPLICE-q uses aligned reads from strand-specific RNA-seq to quantify splicing efficiency for each intron individually and allows the user to select different levels of restrictiveness concerning the introns’ overlap with other genomic elements such as exons of other genes. We applied SPLICE-q to globally assess the dynamics of intron excision in yeast and human nascent RNA-seq. We also show its application using total RNA-seq from a patient-matched prostate cancer sample. Conclusions Our analyses illustrate that SPLICE-q is suitable to detect a progressive increase of splicing efficiency throughout a time course of nascent RNA-seq and it might be useful when it comes to understanding cancer progression beyond mere gene expression levels. SPLICE-q is available at: https://github.com/vrmelo/SPLICE-q


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250013
Author(s):  
Chia-Hsin Hsu ◽  
Hirotaka Tomiyasu ◽  
Chi-Hsun Liao ◽  
Chen-Si Lin

Doxorubicin resistance is a major challenge in the successful treatment of canine diffuse large B-cell lymphoma (cDLBCL). In the present study, MethylCap-seq and RNA-seq were performed to characterize the genome-wide DNA methylation and differential gene expression patterns respectively in CLBL-1 8.0, a doxorubicin-resistant cDLBCL cell line, and in CLBL-1 as control, to investigate the underlying mechanisms of doxorubicin resistance in cDLBCL. A total of 20289 hypermethylated differentially methylated regions (DMRs) were detected. Among these, 1339 hypermethylated DMRs were in promoter regions, of which 24 genes showed an inverse correlation between methylation and gene expression. These 24 genes were involved in cell migration, according to gene ontology (GO) analysis. Also, 12855 hypermethylated DMRs were in gene-body regions. Among these, 353 genes showed a positive correlation between methylation and gene expression. Functional analysis of these 353 genes highlighted that TGF-β and lysosome-mediated signal pathways are significantly associated with the drug resistance of CLBL-1. The tumorigenic role of TGF-β signaling pathway in CLBL-1 8.0 was further validated by treating the cells with a TGF-β inhibitor(s) to show the increased chemo-sensitivity and intracellular doxorubicin accumulation, as well as decreased p-glycoprotein expression. In summary, the present study performed an integrative analysis of DNA methylation and gene expression in CLBL-1 8.0 and CLBL-1. The candidate genes and pathways identified in this study hold potential promise for overcoming doxorubicin resistance in cDLBCL.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 811 ◽  
Author(s):  
Guanglei Li ◽  
Qitao Jia ◽  
Jianguo Zhao ◽  
Xinyun Li ◽  
Mei Yu ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2367-2367
Author(s):  
Mira Jeong ◽  
Deqiang Sun ◽  
Min Luo ◽  
Aysegul Ergen ◽  
Hongcang Gu ◽  
...  

Abstract Abstract 2367 Hematopoietic stem cell (HSC) Aging is a complex process linked to number of changes in gene expression and functional decline of self-renewal and differentiation potential. While epigenetic changes have been implicated in HSC aging, little direct evidence has been generated. DNA methylation is one of the major underlying mechanisms associated with the regulation of gene expression, but changes in DNA methylation patterns with HSC aging have not been characterized. We hypothesize that revealing the genome-wide DNA methylation and transcriptome signatures will lead to a greater understanding of HSC aging. Here, we report the first genome-scale study of epigenomic dynamics during normal mouse HSC aging. We isolated SP-KSL-CD150+ HSC populations from 4, 12, 24 month-old mouse bone marrow and carried out genome-wide reduced representative bisulfite sequencing (RRBS) and identified aging-associated differentially methylated CpGs. Three biological samples were sequenced from each aging group and we obtained 30–40 million high-quality reads with over 30X total coverage on ∼1.1M CpG sites which gives us adequate statistical power to infer methylation ratios. Bisulfite conversion rate of non-CpG cytosines was >99%. We analyzed a variety of genomic features to find that CpG island promoters, gene bodies, 5'UTRs, and 3'UTRs generally were associated with hypermethylation in aging HSCs. Overall, out of 1,777 differentially methylated CpGs, 92.8% showed age-related hypermethylation and 7.2% showed age-related hypomethylation. Gene ontology analyses have revealed that differentially methylated CpGs were significantly enriched near genes associated with alternative splicing, DNA binding, RNA-binding, transcription regulation, Wnt signaling and pathways in cancer. Most interestingly, over 579 splice variants were detected as candidates for age-related hypermethylation (86%) and hypomethylation (14%) including Dnmt3a, Runx1, Pbx1 and Cdkn2a. To quantify differentially expressed RNA-transcripts across the entire transcriptome, we performed RNA-seq and analyzed exon arrays. The Spearman's correlation between two different methods was good (r=0.80). From exon arrays, we identified 586 genes that were down regulated and 363 gene were up regulated with aging (p<0.001). Most interestingly, overall expression of DNA methyl transferases Dnmt1, Dnmt3a, Dnmt3b were down regulated with aging. We also found that Dnmt3a2, the short isoform of Dnmt3a, which lacks the N-terminal region of Dnmt3a and represents the major isoform in ES cells, is more expressed in young HSC. For the RNA-seq analysis, we focused first on annotated transcripts derived from cloned mRNAs and we found 307 genes were down regulated and 1015 gene were up regulated with aging (p<0.05). Secondly, we sought to identify differentially expressed isoforms and also novel transcribed regions (antisense and novel genes). To characterize the genes showing differential regulation, we analyzed their functional associations and observed that the highest scoring annotation cluster was enriched in genes associated with translation, the immune network and hematopoietic cell lineage. We expect that the results of these experiments will reveal the global effect of DNA methylation on transcript stability and the translational state of target genes. Our findings will lend insight into the molecular mechanisms responsible for the pathologic changes associated with aging in HSCs. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 47 (4) ◽  
pp. 436-450 ◽  
Author(s):  
C. Zou ◽  
Y. Fu ◽  
C. Li ◽  
H. Liu ◽  
G. Li ◽  
...  

Oncotarget ◽  
2017 ◽  
Vol 8 (65) ◽  
pp. 108392-108405 ◽  
Author(s):  
Qi-Lin Zhang ◽  
Zheng-Qing Xie ◽  
Ming-Zhong Liang ◽  
Bang Luo ◽  
Xiu-Qiang Wang ◽  
...  

2019 ◽  
Author(s):  
Yang Liao ◽  
Wei Shi

AbstractRNA sequencing (RNA-seq) is currently the standard method for genome-wide gene expression profiling. RNA-seq reads often need to be mapped to a reference genome before read counts can be produced for genes. Read trimming methods have been developed to assist read mapping by removing adapter sequences and low-sequencing-quality bases. It is however unclear what is the impact of read trimming on the quantification of RNA-seq gene expression, an important task in the analysis of RNA-seq data. In this study, we used a benchmark RNA-seq dataset generated in the SEQC project to assess the impact of read trimming on mapping and quantification of RNA-seq reads. We found that adapter sequences can be effectively removed by the read aligner via its ‘soft-clipping’ procedure and many low-sequencing-quality bases, which would be removed by read trimming tools, were rescued by the aligner. Accuracy of gene expression quantification from using untrimmed reads was found to be comparable to or slightly better than that from using trimmed reads, based on expression of >900 genes measured by real-time PCR. Total data analysis time was reduced by up to an order of magnitude when read trimming was not performed. Our study suggests that read trimming is a redundant process in the quantification of RNA-seq expression data.


Sign in / Sign up

Export Citation Format

Share Document