scholarly journals Neuroendocrine and Cardiovascular Activation During Aggressive Reactivity in Dogs

2021 ◽  
Vol 8 ◽  
Author(s):  
Elena Gobbo ◽  
Manja Zupan Šemrov

Our aim was to investigate cardiovascular activation by measuring changes in facial and body surface temperature using infrared thermography, and neuroendocrine activation using salivary cortisol (CORT) and serotonin concentration (SER) in dogs exhibiting aggressive reactivity in real time. Based on two factors, owner-reported past aggressive behaviors, and detailed behavioral observations collected during a Socially Acceptable Behavior test consisting of 16 subtests and, each individual was categorized as aggressive or non-aggressive. CORT and SER showed no difference in neuroendocrine activity between dogs, but aggressive dogs with higher levels of aggression were found to have lower SER. Aggressive dogs also had an increase in facial temperature from pre-test values. The discovery of a correlation between tail wagging and left tail wagging with aggression level and aggression-related behaviors in aggressive dogs is further evidence of the right hemisphere specialization for aggression previously reported in the literature. This study provides the first evidence that both cardiovascular and neuroendocrine systems are activated during an active act of aggression in dogs.

Author(s):  
Gregor Volberg

Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.


1978 ◽  
Vol 9 (1) ◽  
pp. 20-32
Author(s):  
Grayson H. Wheatley ◽  
Robert Mitchell ◽  
Robert L. Frankland ◽  
Rosemarie Kraft

Evidence is presented for hemisphere specialization of the two brain hemispheres: the left hemisphere specialized for logico-analytic tasks and the right hemisphere, visuo-spatial tasks. A hypothesis is put forth for the emergence of the specialization that suggests a shift from predominant right hemisphere processing in infancy to predominant left hemisphere processing in adulthood. Results of the studies reviewed suggest the emergence of concrete-operational thought as the left hemisphere becomes capable of processing logical tasks. Electroencephalography seems particularly useful in determining specialization and mapping changes in hemispheric asymmetry. Implications for school mathematics curriculum are presented.


2000 ◽  
Vol 6 (1) ◽  
pp. 102-103
Author(s):  
Lee X. Blonder

This book contains an introduction by the editors and 15 chapters that are divided into three parts. Part I is entitled “Decoding Speech Sounds and Individual Words”; part II: “Lexical and Sentence-Level Semantics”; and Part III: “Discourse Processing and Problem Solving.” Each part concludes with a commentary by the editors. As these section titles show, the book provides evidence that the right hemisphere is involved with functions more commonly ascribed to the left hemisphere, namely, phonology, morphology, and semantics. In addition, several chapters are devoted to aspects of communicative competence commonly associated with right hemisphere specialization, such as discourse comprehension and the appreciation of emotional verbal messages. Previous works, such as Language, Aphasia, and the Right Hemisphere by Chris Code (1987), provide a more basic introduction to what was then known of right hemisphere communicative competence. The Beeman and Chiarello volume is directed towards a more sophisticated target audience familiar with neurolinguistic models of hemispheric contributions to language comprehension.


2013 ◽  
Vol 311 ◽  
pp. 196-201
Author(s):  
Chia Ju Liu ◽  
Chin Fei Huang ◽  
Chia Yi Chou ◽  
Ming Chi Lu ◽  
Yung Yi Chang ◽  
...  

The aim of this study was to apply frequency bands to explore how mental rotation strategies affect the identification of 2D figures. Eighteen adults were recruited for this study. In the ERP experiments, the participants were required to identify 2D figures with mental rotation. The results showed the differences between the high-achieving (HA) and low-achieving (LA) spatial ability participants in their use of mental rotation for identifying 2D figures. At 300-380 ms, the HA participants showed higher brain activity in the right hemisphere than in other brain areas, whereas the LA participants showed activity in the whole brain. At 520 to 620 ms, the areas of brain activity were in the opposite hemisphere for the HA and LA participants. The highest brain activity was shown in the left hemisphere of the HA participants and in the right hemisphere for the LA participants at 520 to 620 ms. The implication of this study is that right hemisphere specialization for mental rotation might appear in early cognitive processing, but in late cognitive processing, the left hemisphere specialization form of mental rotation might show an advantage.


2009 ◽  
Vol 23 (7) ◽  
pp. 679-691 ◽  
Author(s):  
Jarugool Tretriluxana ◽  
James Gordon ◽  
Beth E. Fisher ◽  
Carolee J. Winstein

Background and objective. The authors investigated hemispheric specialization for the visuomotor transformation of grasp preshaping and the coordination between transport and grasp in individuals poststroke. Based on a bilateral model, the authors hypothesized that after unilateral stroke there would be hemisphere-specific deficits revealed by the ipsilesional limb. Methods. Right or left stroke and age- and limb-matched nondisabled participants performed rapid reach-to-grasp of 3 sized objects. The authors quantified grasp preshaping as the correlation between initial aperture velocity and peak aperture, and peak aperture and object diameter. A cross correlation analysis using transport velocity and aperture size was performed to quantify transport-grasp coordination. All statistical tests for hemisphere-specific deficits involved comparisons between each stroke group and the matched nondisabled group. Results. Overall, the right stroke group, but not left stroke group, demonstrated prolonged movement time. For grasp preshaping there was a higher correlation between initial aperture velocity and peak aperture for the right stroke group and a lower correlation between peak aperture and object diameter for the left stroke group. For transport-grasp coordination the correlation between transport velocity and aperture size was higher for the left stroke group and lower for the right stroke group, which also demonstrated a higher standard deviation of time lag. Conclusions. After left stroke, there was deficient scaling of grasp preshaping and stronger transport-grasp coordination. In contrast, after right stroke, grasp preshaping began earlier and transport-grasp coordination was weaker. Together, these hemisphere-specific deficits suggest a left hemisphere specialization for the visuomotor transformation of grasp preshaping and a right hemisphere specialization for transport-grasp coordination.


2009 ◽  
Vol 21 (6) ◽  
pp. 1146-1161 ◽  
Author(s):  
Christian C. Ruff ◽  
Felix Blankenburg ◽  
Otto Bjoertomt ◽  
Sven Bestmann ◽  
Nikolaus Weiskopf ◽  
...  

We used concurrent TMS–fMRI to test directly for hemispheric differences in causal influences of the right or left fronto-parietal cortex on activity (BOLD signal) in the human occipital cortex. Clinical data and some behavioral TMS studies have been taken to suggest right-hemisphere specialization for top–down modulation of vision in humans, based on deficits such as spatial neglect or extinction in lesioned patients, or findings that TMS to right (vs. left) fronto-parietal structures can elicit stronger effects on visual performance. But prior to the recent advent of concurrent TMS and neuroimaging, it was not possible to directly examine the causal impact of one (stimulated) brain region upon others in humans. Here we stimulated the frontal or intraparietal cortex in the left or right hemisphere with TMS, inside an MR scanner, while measuring with fMRI any resulting BOLD signal changes in visual areas V1–V4 and V5/MT+. For both frontal and parietal stimulation, we found clear differences between effects of right- versus left-hemisphere TMS on activity in the visual cortex, with all differences significant in direct statistical comparisons. Frontal TMS over either hemisphere elicited similar BOLD decreases for central visual field representations in V1–V4, but only right frontal TMS led to BOLD increases for peripheral field representations in these regions. Hemispheric differences for effects of parietal TMS were even more marked: Right parietal TMS led to strong BOLD changes in V1–V4 and V5/MT+, but left parietal TMS did not. These data directly confirm that the human frontal and parietal cortex show right-hemisphere specialization for causal influences on the visual cortex.


2002 ◽  
Vol 14 (5) ◽  
pp. 702-708 ◽  
Author(s):  
Michael B. Miller ◽  
Alan Kingstone ◽  
Michael S. Gazzaniga

Previous neuroimaging studies have claimed a left hemisphere specialization for episodic “encoding” and a right hemisphere specialization for episodic “retrieval.” Yet studies of split-brain patients indicate relatively minor memory impairment after disconnection of the two hemispheres. This suggests that both hemispheres are capable of encoding and retrieval. In the present experiment, we examined the possible limits on encoding capacity of each hemisphere by manipulating the “depth” of processing during the encoding of unfamiliar faces and familiar words in the left and right hemispheres of two split-brain patients. Results showed that only the left hemisphere benefited from deeper (more elaborate) encoding of familiar words, and only the right hemisphere benefited from deeper encoding of unfamiliar faces. Our findings are consistent with the view that hemispheric asymmetries in episodic encoding are related to hemisphere-specific processing of particular stimuli. Convergent with recent neuroimaging studies, these results with split-brain patients also suggest that these hemispheric differences are not due to unique specializations in each half brain for encoding memories, but rather, are due to preferential recruitment of the synaptically closer prefrontal cortex to posterior regions processing material-specific information.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


1990 ◽  
Vol 35 (6) ◽  
pp. 544-547
Author(s):  
Randi C. Martin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document