scholarly journals A FEAST Algorithm for the Linear Response Eigenvalue Problem

Algorithms ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 181 ◽  
Author(s):  
Zhongming Teng ◽  
Linzhang Lu

In the linear response eigenvalue problem arising from quantum chemistry and physics, one needs to compute several positive eigenvalues together with the corresponding eigenvectors. For such a task, in this paper, we present a FEAST algorithm based on complex contour integration for the linear response eigenvalue problem. By simply dividing the spectrum into a collection of disjoint regions, the algorithm is able to parallelize the process of solving the linear response eigenvalue problem. The associated convergence results are established to reveal the accuracy of the approximated eigenspace. Numerical examples are presented to demonstrate the effectiveness of our proposed algorithm.

2019 ◽  
Vol 17 (1) ◽  
pp. 653-667
Author(s):  
Zhongming Teng ◽  
Hong-Xiu Zhong

Abstract In the linear response eigenvalue problem arising from computational quantum chemistry and physics, one needs to compute a few of smallest positive eigenvalues together with the corresponding eigenvectors. For such a task, most of efficient algorithms are based on an important notion that is the so-called pair of deflating subspaces. If a pair of deflating subspaces is at hand, the computed approximated eigenvalues are partial eigenvalues of the linear response eigenvalue problem. In the case the pair of deflating subspaces is not available, only approximate one, in a recent paper [SIAM J. Matrix Anal. Appl., 35(2), pp.765-782, 2014], Zhang, Xue and Li obtained the relationships between the accuracy in eigenvalue approximations and the distances from the exact deflating subspaces to their approximate ones. In this paper, we establish majorization type results for these relationships. From our majorization results, various bounds are readily available to estimate how accurate the approximate eigenvalues based on information on the approximate accuracy of a pair of approximate deflating subspaces. These results will provide theoretical foundations for assessing the relative performance of certain iterative methods in the linear response eigenvalue problem.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 53 ◽  
Author(s):  
Hongxiu Zhong ◽  
Zhongming Teng ◽  
Guoliang Chen

In order to solve all or some eigenvalues lied in a cluster, we propose a weighted block Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem. Error bounds of the approximations to an eigenvalue cluster, as well as their corresponding eigenspace, are established and show the advantages. A practical thick-restart strategy is applied to the block algorithm to eliminate the increasing computational and memory costs, and the numerical instability. Numerical examples illustrate the effectiveness of our new algorithms.


2007 ◽  
Vol 7 (1) ◽  
pp. 68-82
Author(s):  
K. Kropielnicka

AbstractA general class of implicit difference methods for nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann type is constructed. Convergence results are proved by means of consistency and stability arguments. It is assumed that given functions satisfy nonlinear estimates of Perron type with respect to functional variables. Differential equations with deviated variables and differential integral problems can be obtained from a general model by specializing given operators. The results are illustrated by numerical examples.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 89 ◽  
Author(s):  
Manuel Echeverry ◽  
Carlos Mejía

We consider a two-dimensional time fractional diffusion equation and address the important inverse problem consisting of the identification of an ingredient in the source term. The fractional derivative is in the sense of Caputo. The necessary regularization procedure is provided by a two-dimensional discrete mollification operator. Convergence results and illustrative numerical examples are included.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Li-Tao Zhang ◽  
Jian-Lei Li ◽  
Tong-Xiang Gu ◽  
Xing-Ping Liu

Based on the methods presented by Song and Yuan (1994), we construct relaxed matrix parallel multisplitting chaotic generalized USAOR-style methods by introducing more relaxed parameters and analyze the convergence of our methods when coefficient matrices areH-matrices or irreducible diagonally dominant matrices. The parameters can be adjusted suitably so that the convergence property of methods can be substantially improved. Furthermore, we further study some applied convergence results of methods to be convenient for carrying out numerical experiments. Finally, we give some numerical examples, which show that our convergence results are applied and easily carried out.


1994 ◽  
Vol 18 (1-2) ◽  
pp. 47-67 ◽  
Author(s):  
Bart Vinck ◽  
Herwig Bruneel

2011 ◽  
Vol 9 ◽  
pp. 85-89 ◽  
Author(s):  
N. Burschäpers ◽  
S. Fiege ◽  
R. Schuhmann ◽  
A. Walther

Abstract. We analyze the sensitivity of dielectric waveguides with respect to design parameters such as permittivity values or simple geometric dependencies. Based on a discretization using the Finite Integration Technique the eigenvalue problem for the wave number is shown to be non-Hermitian with possibly complex solutions even in the lossless case. Nevertheless, the sensitivity can be obtained with negligible numerical effort. Numerical examples demonstrate the validity of the approach.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yadan Chen ◽  
Yuan Shen ◽  
Shanshan Liu

<p style='text-indent:20px;'>In various applications, such as the computation of energy excitation states of electrons and molecules, and the analysis of interstellar clouds, the linear response eigenvalue problem, which is a special type of the Hamiltonian eigenvalue problem, is frequently encountered. However, traditional eigensolvers may not be applicable to this problem owing to its inherently large scale. In fact, we are usually more interested in computing some of the smallest positive eigenvalues. To this end, a trace minimum principle optimization model with orthogonality constraint has been proposed. On this basis, we propose an unconstrained surrogate model called trace minimization via penalty, and we establish its equivalence with the original constrained model, provided that the penalty parameter is larger than a certain threshold. By avoiding the orthogonality constraint, we can use a gradient-type method to solve this model. Specifically, we use the gradient descent method with Barzilai–Borwein step size. Moreover, we develop a restarting strategy for the proposed algorithm whereby higher accuracy and faster convergence can be achieved. This is verified by preliminary experimental results.</p>


Sign in / Sign up

Export Citation Format

Share Document