scholarly journals A General Cooperative Optimization Approach for Distributing Service Points in Mobility Applications

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 232
Author(s):  
Thomas Jatschka ◽  
Günther R. Raidl ◽  
Tobias Rodemann

This article presents a cooperative optimization approach (COA) for distributing service points for mobility applications, which generalizes and refines a previously proposed method. COA is an iterative framework for optimizing service point locations, combining an optimization component with user interaction on a large scale and a machine learning component that learns user needs and provides the objective function for the optimization. The previously proposed COA was designed for mobility applications in which single service points are sufficient for satisfying individual user demand. This framework is generalized here for applications in which the satisfaction of demand relies on the existence of two or more suitably located service stations, such as in the case of bike/car sharing systems. A new matrix factorization model is used as surrogate objective function for the optimization, allowing us to learn and exploit similar preferences among users w.r.t. service point locations. Based on this surrogate objective function, a mixed integer linear program is solved to generate an optimized solution to the problem w.r.t. the currently known user information. User interaction, refinement of the matrix factorization, and optimization are iterated. An experimental evaluation analyzes the performance of COA with special consideration of the number of user interactions required to find near optimal solutions. The algorithm is tested on artificial instances, as well as instances derived from real-world taxi data from Manhattan. Results show that the approach can effectively solve instances with hundreds of potential service point locations and thousands of users, while keeping the user interactions reasonably low. A bound on the number of user interactions required to obtain full knowledge of user preferences is derived, and results show that with 50% of performed user interactions the solutions generated by COA feature optimality gaps of only 1.45% on average.

2018 ◽  
Vol 7 (3.12) ◽  
pp. 1213
Author(s):  
Ram Sethuraman ◽  
Akshay Havalgi

The concept of deep learning is used in the various fields like text, speech and vision. The proposed work deep neural network is used for recommender system. In this work pair wise objective function is used for emphasis of non-linearity and latent features. The GMF (Gaussian matrix factorization) and MLP techniques are used in this work. The proposed framework is named as NCF which is basically neural network based collaborative filtering. The NCF gives the latent features by reducing the non-linearity and generalizing the matrix. In the proposed work combination of pair-wise and point wise objective function is used and tune by using the concept of cross entropy with Adam optimization. This optimization approach optimizes the gradient descent function. The work is done on 1K and 1M movies lens dataset and it is compared with deep matrix factorization (DMF).  


Author(s):  
Rui Qiu ◽  
Yongtu Liang

Abstract Currently, unmanned aerial vehicle (UAV) provides the possibility of comprehensive coverage and multi-dimensional visualization of pipeline monitoring. Encouraged by industry policy, research on UAV path planning in pipeline network inspection has emerged. The difficulties of this issue lie in strict operational requirements, variable flight missions, as well as unified optimization for UAV deployment and real-time path planning. Meanwhile, the intricate structure and large scale of the pipeline network further complicate this issue. At present, there is still room to improve the practicality and applicability of the mathematical model and solution strategy. Aiming at this problem, this paper proposes a novel two-stage optimization approach for UAV path planning in pipeline network inspection. The first stage is conventional pre-flight planning, where the requirement for optimality is higher than calculation time. Therefore, a mixed integer linear programming (MILP) model is established and solved by the commercial solver to obtain the optimal UAV number, take-off location and detailed flight path. The second stage is re-planning during the flight, taking into account frequent pipeline accidents (e.g. leaks and cracks). In this stage, the flight path must be timely rescheduled to identify specific hazardous locations. Thus, the requirement for calculation time is higher than optimality and the genetic algorithm is used for solution to satisfy the timeliness of decision-making. Finally, the proposed method is applied to the UAV inspection of a branched oil and gas transmission pipeline network with 36 nodes and the results are analyzed in detail in terms of computational performance. In the first stage, compared to manpower inspection, the total cost and time of UAV inspection is decreased by 54% and 56% respectively. In the second stage, it takes less than 1 minute to obtain a suboptimal solution, verifying the applicability and superiority of the method.


Author(s):  
Satoshi Gamou ◽  
Koichi Ito ◽  
Ryohei Yokoyama

The relationships between unit numbers and capacities to be installed for microturbine cogeneration systems are analyzed from an economic viewpoint. In analyzing, an optimization approach is adopted. Namely, unit numbers and capacities are determined together with maximum contract demands of utilities such as electricity and natural gas so as to minimize the annual total cost in consideration of annual operational strategies corresponding to seasonal and hourly energy demand requirements. This optimization problem is formulated as a large-scale mixed-integer linear programming one. The suboptimal solution of this problem is obtained efficiently by solving several small-scale subproblems. Through numerical studies carried out on systems installed in hotels by changing the electrical generating/exhaust heat recovery efficiencies, the initial capital cost of the microturbine cogeneration unit and maximum energy demands as parameters, the influence of the parameters on the optimal numbers and capacities of the microturbine cogeneration units is clarified.


2020 ◽  
Vol 50 (8) ◽  
pp. 811-818
Author(s):  
Pedro Bellavenutte ◽  
Woodam Chung ◽  
Luis Diaz-Balteiro

Spatially explicit, tactical forest planning is a necessary but challenging task in the management of plantation forests. It involves harvest scheduling and planning for road access and log transportation over time and space. This combinatorial problem can be formulated into the fixed-charge transportation problem (FCTP), in which the sum of fixed and variable costs is minimized while meeting harvest volume requirements and allowing necessary road maintenance and log hauling activities. The problem can be solved using general optimization methods such as mixed-integer linear programming (MILP), but the computational efficiency of the MILP-based approach quickly drops as the size and complexity of the problem increases. We developed a new optimization procedure that partitions the large planning problem into smaller subproblems. We applied a hybrid optimization approach using both MILP and heuristic rules to efficiently solve the large FCTP that otherwise may not be solvable using traditional methods. We applied our approach to an industrial plantation forest in Brazil. Our applications demonstrate the performance of the new optimization procedure and the benefit of solving large forest planning problems that integrate harvest scheduling with road access and transportation.


Author(s):  
Jae-Hoon Song ◽  
Han-Lim Choi

This article presents an exact algorithm that is combined with a heuristic method to find the optimal solution for an airplane landing problem. For a given set of airplanes and runways, the objective is to minimize the accumulated deviations from the target landing time of the airplanes. A cost associated with landing either earlier or later than the target landing time is incurred for each airplane within its predetermined time window. In order to manage this type of large-scale optimization problem, a set partitioning formulation that results in a mixed integer linear program is proposed. One key contribution of this article is the development of a branch-and-price methodology, in which the column generation method is integrated with the branch-and-bound method in order to find the optimal integer solution. In addition to the exact algorithm, a simple heuristic method is also presented to tighten the solution space. Numerical experiments are undertaken for the proposed algorithm in order to confirm its effectiveness using public data from the OR-Library. As an application in the real-world situation of airplane landing, air traffic data from Incheon International Airport is employed to assure the efficiency of the proposed algorithm.


Author(s):  
Mohammed Erritali ◽  
Badr Hssina ◽  
Abdelkader Grota

<p>Recommendation systems are used successfully to provide items (example:<br />movies, music, books, news, images) tailored to user preferences.<br />Among the approaches proposed, we use the collaborative filtering approach<br />of finding the information that satisfies the user by using the<br />reviews of other users. These ratings are stored in matrices that their<br />sizes increase exponentially to predict whether an item is interesting<br />or not. The problem is that these systems overlook that an assessment<br />may have been influenced by other factors which we call the cold start<br />factor. Our objective is to apply a hybrid approach of recommendation<br />systems to improve the quality of the recommendation. The advantage<br />of this approach is the fact that it does not require a new algorithm<br />for calculating the predictions. We we are going to apply the two Kclosest<br />neighbor algorithms and the matrix factorization algorithm of<br />collaborative filtering which are based on the method of (singular value<br />decomposition).</p>


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chenyi Yan ◽  
Xifu Wang ◽  
Kai Yang

As information and communication technology evolves and expands, business and markets are linked to form a complex international network, thus generating plenty of cross-border trading activities in the supply chain network. Through the observations from a typical cross-border supply chain network, this paper introduces the fuzzy reliability-oriented 2-hub center problem with cluster-based policy, which is a special case of the well-studied hub location problem (HLP). This problem differs from the classical HLP in the sense that (i) the hub-and-spoke (H&S) network is grouped into two clusters in advance based on their cross-border geographic features, and (ii) a fuzzy reliability optimization approach based on the possibility measure is developed. The proposed problem is first modeled through a mixed-integer nonlinear programming (MINLP) formulation that maximizes the reliability of the entire cross-border supply chain network. Then, some linearization techniques are implemented to derive a linear model, which can be efficiently solved by exact algorithms run by CPLEX for only small instances. To counteract the difficulty for solving the proposed problem in realistic-sized instances, a tabu search (TS) algorithm with two types of move operators (called “Swap I” and “Swap II”) is further developed. Finally, a series of numerical experiments based on the Turkish network and randomly generated large-scale datasets are set up to verify the applicability of the proposed model as well as the superiority of the TS algorithm compared to the CPLEX.


2020 ◽  
Author(s):  
Shivaram Subramanian ◽  
Pavithra Harsha

We present an integrated optimization approach to parameter estimation for discrete choice demand models where data for one or more choice alternatives are censored. We employ a mixed-integer program (MIP) to jointly determine the prediction parameters associated with the customer arrival rate and their substitutive choices. This integrated approach enables us to recover proven, (near-) optimal parameter values with respect to the chosen loss-minimization (LM) objective function, thereby overcoming a limitation of prior multistart heuristic approaches that terminate without providing precise information on the solution quality. The imputations are done endogenously in the MIP by estimating optimal values for the probabilities of the unobserved choices being selected. Under mild assumptions, we prove that the approach is asymptotically consistent. For large LM instances, we derive a nonconvex-contvex alternating heuristic that can be used to obtain quick, near-optimal solutions. Partial information, user acceptance criteria, model selection, and regularization techniques can be incorporated to enhance practical efficacy. We test the LM model on simulated and real data and present results for a variety of demand-prediction scenarios: single-item, multi-item, time-varying arrival rate, large-scale instances, and a dual-layer estimation model extension that learns the unobserved market shares of competitors. This paper was accepted by Yinyu Ye, optimization.


Sign in / Sign up

Export Citation Format

Share Document