scholarly journals Numerical Investigation of Influence of Entropy Wave on the Acoustic and Wall Heat Transfer Characteristics of a High-Pressure Turbine Guide Vane

Acoustics ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 524-538
Author(s):  
Keqi Hu ◽  
Yuanqi Fang ◽  
Yao Zheng ◽  
Gaofeng Wang ◽  
Stéphane Moreau

As an indirect noise source generated in the combustion chamber, entropy waves are widely prevalent in modern gas turbines and aero-engines. In the present work, the influence of entropy waves on the downstream flow field of a turbine guide vane is investigated. The work is mainly based on a well-known experimental configuration called LS89. Two different turbulence models are used in the simulations which are the standard k-ω model and the scale-adaptive simulation (SAS) model. In order to handle the potential transition issue, Menter’s ð-Reθ transition model is coupled with both models. The baseline cases are first simulated with the two different turbulence models without any incoming perturbation. Then one forced case with an entropy wave train set at the turbine inlet at a given frequency and amplitude is simulated. Results show that the downstream maximum Mach number is rising from 0.98 to 1.16, because the entropy waves increase the local temperature of the flow field; also, the torque of the vane varies as the entropy waves go through, the magnitude of the oscillation is 7% of the unforced case. For the wall (both suction and pressure side of the vane) heat transfer, the entropy waves make the maximum heat transfer coefficient nearly twice as the large at the leading edge, while the minimum heat transfer coefficient stays at a low level. As for the averaged normalized heat transfer coefficient, a maximum difference of 30% appears between the baseline case and the forced case. Besides, during the transmission process of entropy waves, the local pressure fluctuates with the wake vortex shedding. The oscillation magnitude of the pressure wave at the throat is found to be enhanced due to the inlet entropy wave by applying the dynamic mode decomposition (DMD) method. Moreover, the transmission coefficient of the entropy waves, and the reflection and transmission coefficients of acoustic waves are calculated.

2021 ◽  
pp. 1-33
Author(s):  
Tommaso Bacci ◽  
Alessio Picchi ◽  
Bruno Facchini ◽  
Simone Cubeda

Abstract Modern gas turbines lean combustors are used to limit NOx pollutant emissions; on the other hand, their adoption presents other challenges, especially concerning the combustor-turbine interaction. Turbine inlet conditions are generally characterized by severe temperature distortions and swirl degree, which is responsible for very high turbulence intensities. Past studies have focused on the description of the effects of these phenomena on the behavior of the high pressure turbine. Nevertheless, very limited experimental results are available when it comes to evaluate the heat transfer coefficient (HTC) on the nozzle guide vane surface, since relevant temperature distortions present a severe challenge for the commonly adopted measurement techniques. The work presented in this paper was carried out on a non-reactive, annular, three-sector rig, made by a combustor simulator and a NGV cascade. It can reproduce a swirling flow, with temperature distortions at the combustor-turbine interface plane. This test apparatus was exploited to develop an experimental approach to retrieve heat transfer coefficient and adiabatic wall temperature distributions simultaneously, to overcome the known limitations imposed by temperature gradients on state-of-the-art methods for HTC calculation from transient tests. A non-cooled mockup of a NGV doublet, manufactured using low thermal diffusivity plastic material, was used for the tests, carried out using IR thermography with a transient approach. In the authors' knowledge, this presents the first experimental attempt of measuring a nozzle guide vane heat transfer coefficient in the presence of relevant temperature distortions and swirl.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040082
Author(s):  
Ke-Qi Hu ◽  
Yi-Fan Xia ◽  
Yao Zheng ◽  
Gao-Feng Wang

Heat transfer is an important phenomenon that exists in many industrial applications, especially for gas turbines, aeronautical engines. In this work, two different turbulence models ([Formula: see text] and SAS model) are used to investigate the effects of inlet turbulence on wall heat transfer and the characteristics of flow field in a well-known turbine guide vane (LS89). In order to handle the transition, Menter’s [Formula: see text] transition model is used. The simulations show that the inlet turbulence has an apparent effect on the wall heat transfer of the vane. Not only the maximum wall heat transfer coefficient is increased, the distribution of wall heat flux at the suction side is also modified. The isentropic Mach number along the vane surface is insensitive to the variance of inlet turbulence intensity. Besides, a shock appears in the throat and a laminar-to-turbulence transition position moves forward after the main flow turbulence is enhanced. Moreover, the results indicate that SAS model is capable of capturing more flow structures such as reflecting pressure waves and shedding vortexes while the [Formula: see text] model misses them due to the dissipation.


Author(s):  
K. S. Chana ◽  
B. R. Haller

For gas turbines, accurate prediction of the external heat transfer coefficient on the high pressure (HP) turbine rotor blades is of immense importance, as this component is critical and operates at material limits. Furthermore the external heat load is the governing boundary condition for the design of the internal cooling system of the blade. There is a continuous drive to increase the turbine entry temperature to increase the cycle efficiency, whilst developing blade cooling systems with higher efficiency (i.e. using less cooling air). A new systematic procedure has been developed and validated to predict the external heat transfer to a blade surface. The procedure allows for the unsteady effects caused by the passing of upstream nozzle guide vane (NGV) wakes. The early part of the suction surface was shown to have a pessimistic prediction of external heat transfer coefficient which resulted in unnecessary over-cooling of the blade in this region. The heat transfer aspect is found from the well-known TEXSTAN differential boundary layer method, developed by Mike Crawford at Texas University from the original approach of Spalding & Patankar. The method is validated against the MT1 turbine tested in the QinetiQ Turbine Test Facility. Predictions and comparisons have also been carried out on the VKI turbine stage. The level of agreement with the test data is shown to be good.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


2021 ◽  
Author(s):  
Dechao Liu ◽  
Shulei Li ◽  
Gongnan Xie ◽  
Youqian Chen

Abstract In order to explore the fluid flow and heat transfer features of supercritical fluids used in Brayton cycle for waste-heat utilization of marine gas turbines, the effects of ocean rolling motion on thermo-fluidic characteristics of supercritical carbon dioxide (SCO2) in a circular tube are computationally investigated based on a verified turbulence model. It can be found that at a given rolling period, compared to that under static condition, the time-averaged heat transfer capacity is improved by 7.9%, but the onset of the heat transfer recovery is delayed so that the range of the heat transfer deterioration becomes widened. Under the action of the inertial forces, the heat exchange between cooler/denser and warmer/lighter fluids is enhanced, a secondary circulation formed at t/tc = 0.325 and the maximum improvement of section-averaged heat transfer coefficient is 71% at this time. For various periods, the variation trend of time-averaged heat transfer coefficient for SCO2 shows a parabolic, which is distinguishing from conventional fluids. A polarization phenomenon for instantaneous thermal performance can be observed under severe rolling. With rise of the layout height, the time-average heat transfer performance of tube increases monotonously, and the maximum increment is 10.64% in study range.


2004 ◽  
Vol 10 (5) ◽  
pp. 345-354 ◽  
Author(s):  
Jan Dittmar ◽  
Achmed Schulz ◽  
Sigmar Wittig

The demand of improved thermal efficiency and high power output of modern gas turbine engines leads to extremely high turbine inlet temperature and pressure ratios. Sophisticated cooling schemes including film cooling are widely used to protect the vanes and blades of the first stages from failure and to achieve high component lifetimes. In film cooling applications, injection from discrete holes is commonly used to generate a coolant film on the blade's surface.In the present experimental study, the film cooling performance in terms of the adiabatic film cooling effectiveness and the heat transfer coefficient of two different injection configurations are investigated. Measurements have been made using a single row of fanshaped holes and a double row of cylindrical holes in staggered arrangement. A scaled test model was designed in order to simulate a realistic distribution of Reynolds number and acceleration parameter along the pressure side surface of an actual turbine guide vane. An infrared thermography measurement system is used to determine highly resolved distribution of the models surface temperature. Anin-situcalibration procedure is applied using single embedded thermocouples inside the measuring plate in order to acquire accurate local temperature data.All holes are inclined 35° with respect to the model's surface and are oriented in a streamwise direction with no compound angle applied. During the measurements, the influence of blowing ratio and mainstream turbulence level on the adiabatic film cooling effectiveness and heat transfer coefficient is investigated for both of the injection configurations.


Author(s):  
Joshua B. Anderson ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary Webster

The use of compound-angled shaped film cooling holes in gas turbines provides a method for cooling regions of extreme curvature on turbine blades or vanes. These configurations have received surprisingly little attention in the film cooling literature. In this study, a row of laid-back fanshaped holes based on an open-literature design, were oriented at a 45-degree compound angle to the approaching freestream flow. In this study, the influence of the approach flow boundary layer thickness and character were experimentally investigated. A trip wire and turbulence generator were used to vary the boundary layer thickness and freestream conditions from a thin laminar boundary layer flow to a fully turbulent boundary layer and freestream at the hole breakout location. Steady-state adiabatic effectiveness and heat transfer coefficient augmentation were measured using high-resolution IR thermography, which allowed the use of an elevated density ratio of DR = 1.20. The results show adiabatic effectiveness was generally lower than for axially-oriented holes of the same geometry, and that boundary layer thickness was an important parameter in predicting effectiveness of the holes. Heat transfer coefficient augmentation was highly dependent on the freestream turbulence levels as well as boundary layer thickness, and significant spatial variations were observed.


Author(s):  
Dieter E. Bohn ◽  
Volker J. Becker

This paper presents the numerical investigations of the flow and heat transfer of two configurations of a transonic turbine guide vane. The basic configuration is a vane with convection cooling. The second configuration is additionally coated with a thermal barrier consisting of ZrO2. The results are obtained with a conjugate heat transfer and flow computer code that has been developed at the Institute of Steam and Gas Turbines. Measurement data is available for the basic configuration and the computational results are compared to the experimental results. The results show very good agreement between calculated and measured vane surface temperatures. The trailing edge turns out to be subjected to high thermal loads as it is too thin to be cooled effectively. Secondary flow phenomena like the passage vortex and the corner vortex and their impact on the temperature distribution are discussed. The ZrO2 coating is calculated for a thickness of 300μm. The substrate material temperatures are lowered by about 20 K–29 K in the stagnation point area and by about 27 K–43 K in the shock area on the suction side. At the trailing edge, the coating on the suction side and on the pressure side hardly influences the metal temperature.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongfei Tang ◽  
Hongyan Huang ◽  
Wanjin Han

The different turbulence models are adopted to simulate NASA-MarkII high pressure air-cooled gas turbine. The experimental work condition is Run 5411. The paper researches that the effect of different turbulence models for the flow and heat transfer characteristics of turbine. The turbulence models include: the laminar turbulence model, high Reynolds number k-ε turbulence model, low Reynolds number turbulence model (k-ω standard format, k-ω-SST and k-ω-SST-γ-θ) and B-L algebra turbulence model which is adopted by the compiled code. The results show that the different turbulence models can give good flow characteristics results of turbine, but the heat transfer characteristics results are different. Comparing to the experimental results, k-ω-SST-θ-γ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature is higher. The results of B-L algebra turbulence model show that the results of B-L model are accurate besides it has 4% temperature error in the transition region. As to the other turbulence models, the results show that all turbulence models can simulate the temperature distribution on the blade pressure surface except the laminar turbulence model underestimates the heat transfer coefficient of turbulence flow region. On the blade suction surface with transition flow characteristics, high Reynolds number k-ε turbulence model overestimates the heat transfer coefficient and causes the blade surface temperature is high about 90K than the experimental result. Low Reynolds number k-ω standard format and k-ω-SST turbulence models also overestimate the blade surface temperature value. So it can draw a conclusion that the unreasonable choice of turbulence models can cause biggish errors for conjugate heat transfer problem of turbine. The combination of k-ω-SST-γ-θ model and B-L algebra model can get more accurate turbine thermal environment results. In addition, in order to obtain the affect of different turbulence models for gas turbine conjugate heat transfer problem. The different turbulence models are adopted to simulate the different computation mesh domains (First case and Second case). As to each cooling passages, the first case gives the wall heat transfer coefficient of each cooling passages and the second case considers the conjugate heat transfer course between the cooling passages and blade. It can draw a conclusion that the application of heat transfer coefficient on the wall of each cooling passages avoids the accumulative error. So, for the turbine vane geometry models with complex cooling passages or holes, the choice of turbulence models and the analysis of different mesh domains are important. At last, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine.


2017 ◽  
Vol 29 (1) ◽  
pp. 44-48
Author(s):  
KM Tanvir Ahmmed ◽  
Sultana Razia Syeda

In this study saturated nucleate pool boiling of water with sodium oleate surfactant on a horizontal cylindrical heater surface has been investigated experimentally and compared with that of demineralized water. The concentration of sodium oleate in water was 100-300 ppm. The experimental results show that a small amount of surfactant enhances the heat transfer coefficient significantly. At low surfactant concentrations, heat transfer coefficient increases with increasing surfactant concentration in water. The maximum heat transfer enhancement is found to be at 250 ppm of sodium oleate solution. By adding more surfactant to water, heat transfer coefficient is found to be lowered. Surface tension of different concentration of sodium oleate solutions is measured. It is observed that the maximum heat transfer coefficient is obtained at a surfactant concentration that corresponds to the critical micelle concentration (cmc) of the sodium oleate solution.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 44-48


Sign in / Sign up

Export Citation Format

Share Document