scholarly journals Recognition Method of Digital Meter Readings in Substation Based on Connected Domain Analysis Algorithm

Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 170
Author(s):  
Ziyuan Zhang ◽  
Zexi Hua ◽  
Yongchuan Tang ◽  
Yunjia Zhang ◽  
Weijun Lu ◽  
...  

Aiming at the problem that the number and decimal point of digital instruments in substations are prone to misdetection and missed detection, a method of digital meter readings in a substation based on connected domain analysis algorithm is proposed. This method uses Faster R-CNN (Faster Region Convolutional Neural Network) as a positioning network to localize the dial area, and after acquiring the partial image, it enhances the useful information of the digital area. YOLOv4 (You Only Look Once) convolutional neural network is used as the detector to detect the digital area. The purpose is to distinguish the numbers and obtain the digital area that may contain a decimal point or no decimal point at the tail. Combined with the connected domain analysis algorithm, the difference between the number of connected domain categories and the area ratio of the digital area is analyzed, and the judgment of the decimal point is realized. The method reduces the problem of mutual interference among categories when detecting YOLOv4. The experimental results show that the method improves the detection accuracy of the algorithm.

Author(s):  
Canyi Du ◽  
Rui Zhong ◽  
Yishen Zhuo ◽  
Xinyu Zhang ◽  
Feifei Yu ◽  
...  

Abstract Traditional engine fault diagnosis methods usually need to extract the features manually before classifying them by the pattern recognition method, which makes it difficult to solve the end-to-end fault diagnosis problem. In recent years, deep learning has been applied in different fields, bringing considerable convenience to technological change, and its application in the automotive field also has many applications, such as image recognition, language processing, and assisted driving. In this paper, a one-dimensional convolutional neural network (1D-CNN) in deep learning is used to process vibration signals to achieve fault diagnosis and classification. By collecting the vibration signal data of different engine working conditions, the collected data are organized into several sets of data in a working cycle, which are divided into a training sample set and a test sample set. Then, a one-dimensional convolutional neural network model is built in Python to allow the feature filter (convolution kernel) to learn the data from the training set and these convolution checks process the input data of the test set. Convolution and pooling extract features to output to a new space, which is characterized by learning features directly from the original vibration signals and completing fault diagnosis. The experimental results show that the pattern recognition method based on a one-dimensional convolutional neural network can be effectively applied to engine fault diagnosis and has higher diagnostic accuracy than traditional methods.


Author(s):  
Bohao Li ◽  
Liping Zhao ◽  
Yiyong Yao

Failure time prognosis in manufacturing process plays a crucial role in guaranteeing manufacturing safety and reducing maintenance loss. However, most current prognosis methods face great difficulty when handling massive data collected from manufacturing process. Convolutional neural network (CNN) provides an effective way to extract features with massive data. Due to the difference between images and multisensory signals, CNN is not suitable for machining process. Inspired by the idea of CNN, a novel prognosis framework is proposed based on the characteristics of multisensory signals, which is called multi-dislocated time series convolutional neural network (MDTSCNN). The proposed MDTSCNN is composed of multi-dislocate layer, convolutional layer, pooling layer and fully connected layer. By adding a multi-dislocate layer, this model can learn the relationship between different signals and different intervals in periodic multisensory signals. The effectiveness of proposed method is validated by a milling process. Compared to other prognosis method, the proposed MDTSCNN shows enhanced performances in prediction accuracy.


Author(s):  
Benhui Xia ◽  
Dezhi Han ◽  
Ximing Yin ◽  
Gao Na

To secure cloud computing and outsourced data while meeting the requirements of automation, many intrusion detection schemes based on deep learn ing are proposed. Though the detection rate of many network intrusion detection solutions can be quite high nowadays, their identification accuracy on imbalanced abnormal network traffic still remains low. Therefore, this paper proposes a ResNet &Inception-based convolutional neural network (RICNN) model to abnormal traffic classification. RICNN can learn more traffic features through the Inception unit, and the degradation problem of the network is eliminated through the direct map ping unit of ResNet, thus the improvement of the model?s generalization ability can be achievable. In addition, to simplify the network, an improved version of RICNN, which makes it possible to reduce the number of parameters that need to be learnt without degrading identification accuracy, is also proposed in this paper. The experimental results on the dataset CICIDS2017 show that RICNN not only achieves an overall accuracy of 99.386% but also has a high detection rate across different categories, especially for small samples. The comparison experiments show that the recognition rate of RICNN outperforms a variety of CNN models and RNN models, and the best detection accuracy can be achieved.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Longzhi Zhang ◽  
Dongmei Wu

Grasp detection based on convolutional neural network has gained some achievements. However, overfitting of multilayer convolutional neural network still exists and leads to poor detection precision. To acquire high detection accuracy, a single target grasp detection network that generalizes the fitting of angle and position, based on the convolution neural network, is put forward here. The proposed network regards the image as input and grasping parameters including angle and position as output, with the detection manner of end-to-end. Particularly, preprocessing dataset is to achieve the full coverage to input of model and transfer learning is to avoid overfitting of network. Importantly, a series of experimental results indicate that, for single object grasping, our network has good detection results and high accuracy, which proves that the proposed network has strong generalization in direction and category.


Author(s):  
Jovin Angelico ◽  
Ken Ratri Retno Wardani

The computer ability to detect human being by computer vision is still being improved both in accuracy or computation time. In low-lighting condition, the detection accuracy is usually low. This research uses additional information, besides RGB channels, namely a depth map that shows objects’ distance relative to the camera. This research integrates Cascade Classifier (CC) to localize the potential object, the Convolutional Neural Network (CNN) technique to identify the human and nonhuman image, and the Kalman filter technique to track human movement. For training and testing purposes, there are two kinds of RGB-D datasets used with different points of view and lighting conditions. Both datasets have been selected to remove images which contain a lot of noises and occlusions so that during the training process it will be more directed. Using these integrated techniques, detection and tracking accuracy reach 77.7%. The impact of using Kalman filter increases computation efficiency by 41%.


Sign in / Sign up

Export Citation Format

Share Document