scholarly journals Back Electro Motive Force Estimation Method for Cascade Proportional Integral Control in Permanent Magnet Synchronous Motors

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 319
Author(s):  
Jeonghwan Gil ◽  
Sesun You ◽  
Youngwoo Lee ◽  
Wonhee Kim

A cascade proportional integral control method with back-electro motive force compensation has been widely used for permanent magnet synchronous motors. In the permanent magnet synchronous motor control, it is important to accurately know the back-electro motive force constant for torque generation as well as back-electro motive force compensation. In this study, a real-time back-electro motive force constant estimation algorithm is developed to improve the velocity tracking control performance. The proposed method consists of a proportional integral controller and a back-electro motive force constant estimator. The proportional integral controller is designed to reduce the velocity tracking error. The back-electro motive force constant estimator is designed to estimate the back-electro motive force constant. It was verified that the estimated back-electro motive force constant converges to the actual back-electro motive force constant. The estimated back-electro motive force constant is applied to the cascade proportional integral controller. To verify the effectiveness of the proposed method, the performance of the proposed method is validated experimentally.

Author(s):  
Hichem Othmani ◽  
D. Mezghani ◽  
A. Mami

In this article, we have set up a vector control law of induction machine where we tried different type of speed controllers. Our control strategy is of type Field Orientated Control (FOC). In this structure we designed a Fuzzy Gain-Scheduling Proportional–Integral (Pi) controller to obtain best result regarding the speed of induction machine. At the beginning we designed a Pi controller with fixed parameters. We came up to these parameters by identifying the transfer function of this controller to that of Broïda (second order transfer function). Then we designed a fuzzy logic (FL) controller. Based on simulation results, we highlight the performances of each controller. To improve the speed behaviour of the induction machine, we have designend a controller called “Fuzzy Gain-Scheduling Proportional–Integral controller” (FGS-PI controller) which inherited the pros of the aforementioned controllers. The simulation result of this controller will strengthen its performances.


2020 ◽  
pp. 107754632095792
Author(s):  
Sahaj Saxena ◽  
Yogesh V Hote

In a feedback control loop, when there exists a delay in processing the control signal (often called computational delay), it is difficult to stabilize the system, particularly when the system exhibits uncertainty. To solve this problem, we proposed a new robust proportional integral control strategy for a class of uncertain systems exhibiting parametric uncertainty. A two-stage scheme is proposed in which the first stage identifies the worst plant that has the highest chance of facing instability; and in the second stage, based on the worst plant, the tuning parameters of the proportional integral controller are determined using the stability boundary locus approach under the desired closed-loop specifications of gain and phase margins. The efficiency of the proposed scheme is verified for servo and regulatory control problems.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199226
Author(s):  
Tong Xu ◽  
Dong Wang ◽  
Zuodong Xiao ◽  
Cancan Chu ◽  
Weigong Zhang

This article develops a four-level test system for accurately evaluating pavement compaction performance of autonomous articulated vehicles. In the evaluation layer, various performance indicators are evaluated, including the stability, rapidity and accuracy of trajectory tracking, and the ratio of required compaction to actual compaction once and twice and compaction repeatability index when pavement compaction. The guidance and control layer can be described in terms of theory and application. At the theoretical level, the line of sight guidance algorithm and incremental proportional integral control algorithm are introduced to eliminate system control lag. Among them, the best line of sight guidance and incremental proportional integral control parameters are selected by the Elitist strategies genetic algorithm, and the initial parameters are set according to human driving experience initial control parameters. At the application level, the BECKHOFF controller, a kind of programmable logic controller, acts as the main guidance and control unit in the four-level control system, fixed speed is given to the autonomous articulated vehicle by setting the engine speed and transmission gear, and steering wheel angle is adjusted in real time by the BECKHOFF controller. In the sensor level, a simplified sensor configuration is used to reduce overall cost. The comparative simulation results of no controller, the incremental proportional integral controller, line of sight guidance-incremental proportional integral controller with human driving experience initial control parameters, line of sight guidance-incremental proportional integral controller with random initial control parameters, and elitist strategies genetic algorithm-line of sight guidance-incremental proportional integral controller with human driving experience initial control parameters manifest evidently that the proposed elitist strategies genetic algorithm-line of sight guidance-incremental proportional integral controller with human driving experience initial control parameters has almost no steady-state error, no overshoot, and short settling time. Field results show that ratio of required compaction to actual compaction once achieves 100%, ratio of required compaction to actual compaction twice achieves 94.6%, and compaction repeatability index achieves 35%.


Author(s):  
Viyils Sangregorio-Soto ◽  
Claudia L. Garzon-Castro ◽  
Gianfranco Mazzanti ◽  
Manuel Figueredo ◽  
John A. Cortes-Romero

Sign in / Sign up

Export Citation Format

Share Document