scholarly journals Analysis and Modeling of Attractive Force Using an Electropermanent Magnet and Electromagnetic in a Novel Wobble Gripper

Actuators ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 116
Author(s):  
Sang Yong Park ◽  
Dongyoung Lee ◽  
Buchun Song ◽  
Yoon Su Baek

An electropermanent magnet (EM) can be fixed or rotated without applying the additional power of a wobble motor. This consists of a neodymium magnet and semi-hard magnet. A model to design a wobble motor for a wobble gripper without finite element analyses and to predict the attraction force according to the permanent magnet and current is necessary. In this paper, a force model is derived using distribution parameter and magnetic circuit analyses, including flux loss and fringing effects. It is not easy to design a complete magnetic circuit model considering the loss effects, but it can be constructed using a relatively straightforward method that simplifies the paths of leaked fluxes into arcs and straight lines. The model was verified by comparing the results of finite element analyses with measurements of two prototypes using internal and external fixed cases. The model properly predicts the attractive force between the rotor and stator and can be used in the initial design of a gripper that holds or rotates with the electropermanent magnet.

Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 67
Author(s):  
Myounggyu Noh ◽  
Eunsang Kwon ◽  
So Hee Park ◽  
Young-Woo Park

Mobile robots that are required to climb inclined ferromagnetic surfaces typically employ magnetic wheels. In order to design magnetic wheels and to properly size the permanent magnet as magnetizing source without the need for finite element analyses, a model that predicts the attractive magnetic force is necessary. In this paper, an analytical force model is derived by estimating the reluctance between the wheel and the surface. A magnetic circuit is constructed, incorporating the leakage flux from the side of the wheel. The model is validated against the results from finite element analyses and measurements from a test rig and a wheel prototype. Within the limitations of the model, it can adequately predict the force and can be used for initial design of magnetic wheels.


2014 ◽  
Vol 33 (5) ◽  
pp. 669-673
Author(s):  
Hirokazu KUMANO ◽  
Yoshinori NAKAMURA ◽  
Ryo KANBARA ◽  
Yukyo TAKADA ◽  
Kent T. OCHIAI ◽  
...  

2011 ◽  
Vol 383-390 ◽  
pp. 7428-7432
Author(s):  
Yang Cao ◽  
Ming Zong ◽  
Jing Zhang

In this paper, a novel structure of hybrid magnetic bearing with PM bias and inductance displacement sensor is proposed. The operating principle of the hybrid magnetic bearing with PM bias is introduced. The Electromagnetic Force Model is built in the paper, which is useful for the hybrid magnetic bearing control. An example is given. The analysis of finite element method shows that the structure of the hybrid magnetic bearing with PM bias proposed in the paper is feasible and the calculation method for hybrid magnetic circuit is correct.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


Author(s):  
Jing Zhang ◽  
Hong-wei Guo ◽  
Juan Wu ◽  
Zi-ming Kou ◽  
Anders Eriksson

In view of the problems of low accuracy, small rotational angle, and large impact caused by flexure joints during the deployment process, an integrated flexure revolute (FR) joint for folding mechanisms was designed. The design was based on the method of compliance and stiffness ellipsoids, using a compliant dyad building block as its flexible unit. Using the single-point synthesis method, the parameterized model of the flexible unit was established to achieve a reasonable allocation of flexibility in different directions. Based on the single-parameter error analysis, two error models were established to evaluate the designed flexure joint. The rotational stiffness, the translational stiffness, and the maximum rotational angle of the joints were analyzed by nonlinear finite element analyses. The rotational angle of one joint can reach 25.5° in one direction. The rotational angle of the series FR joint can achieve 50° in one direction. Experiments on single and series flexure joints were carried out to verify the correctness of the design and analysis of the flexure joint.


2012 ◽  
Vol 497 ◽  
pp. 89-93
Author(s):  
Liang Liang Yuan ◽  
Ke Hua Zhang ◽  
Li Min

In order to process heterotype hole of workpiece precisely, an open abrasive flow polish machine is designed, and the optimization design of machine frame is done for low cost. Firstly, basing on the parameters designed with traditional ways, three-dimensional force model is set up with the soft of SolidWorks. Secondly, the statics and modal analysis for machine body have been done in Finite element methods (FEM), and then the optimization analysis of machine frame has been done. At last, the model of rebuild machine frame has been built. Result shows that the deformation angle value of machine frame increased from 0.72′ to 1.001′, the natural frequency of the machine decreased from 75.549 Hz to 62.262 Hz, the weight of machine decreased by 74.178 Kg after optimization. It meets the strength, stiffness and angel stiffness requirement of machine, reduces the weight and cost of machine.


Sign in / Sign up

Export Citation Format

Share Document