scholarly journals Critical Parameter Identification for Safety Events in Commercial Aviation Using Machine Learning

Aerospace ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 73 ◽  
Author(s):  
HyunKi Lee ◽  
Sasha Madar ◽  
Santusht Sairam ◽  
Tejas G. Puranik ◽  
Alexia P. Payan ◽  
...  

In recent years, there has been a rapid growth in the application of data science techniques that leverage aviation data collected from commercial airline operations to improve safety. This paper presents the application of machine learning to improve the understanding of risk factors during flight and their causal chains. With increasing complexity and volume of operations, rapid accumulation and analysis of this safety-related data has the potential to maintain and even lower the low global accident rates in aviation. This paper presents the development of an analytical methodology called Safety Analysis of Flight Events (SAFE) that synthesizes data cleaning, correlation analysis, classification-based supervised learning, and data visualization schema to streamline the isolation of critical parameters and the elimination of tangential factors for safety events in aviation. The SAFE methodology outlines a robust and repeatable framework that is applicable across heterogeneous data sets containing multiple aircraft, airport of operations, and phases of flight. It is demonstrated on Flight Operations Quality Assurance (FOQA) data from a commercial airline through use cases related to three safety events, namely Tire Speed Event, Roll Event, and Landing Distance Event. The application of the SAFE methodology yields a ranked list of critical parameters in line with subject-matter expert conceptions of these events for all three use cases. The work concludes by raising important issues about the compatibility levels of machine learning and human conceptualization of incidents and their precursors, and provides initial guidance for their reconciliation.

2021 ◽  
Author(s):  
Luc Thomès ◽  
Rebekka Burkholz ◽  
Daniel Bojar

AbstractAs a biological sequence, glycans occur in every domain of life and comprise monosaccharides that are chained together to form oligo- or polysaccharides. While glycans are crucial for most biological processes, existing analysis modalities make it difficult for researchers with limited computational background to include information from these diverse and nonlinear sequences into standard workflows. Here, we present glycowork, an open-source Python package that was designed for the processing and analysis of glycan data by end users, with a strong focus on glycan-related data science and machine learning. Glycowork includes numerous functions to, for instance, automatically annotate glycan motifs and analyze their distributions via heatmaps and statistical enrichment. We also provide visualization methods, routines to interact with stored databases, trained machine learning models, and learned glycan representations. We envision that glycowork can extract further insights from any glycan dataset and demonstrate this with several workflows that analyze glycan motifs in various biological contexts. Glycowork can be freely accessed at https://github.com/BojarLab/glycowork/.


2021 ◽  
Author(s):  
Nichnita Tortrakul ◽  
Chatwit Pochan ◽  
Steve Southland ◽  
Pimjai Mala ◽  
Tawpath Pichaichanlert ◽  
...  

Abstract This paper describes a method of transforming legacy manual bit/BHA planning process into a digital solution to enhance drilling assembly selection efficiency and consistency. The solution presented improves overall capital stewardship thru an effective and semi-automated use of data to deliver high quality decisions and improve decision consistency across drilling applications and drive drilling performance. Data science and machine learning is applied to streamline the data preparation process and present to the user a statistically sound drilling assembly solution for the drilling environment input. A large +6000 well database is used to explore alternatives and rank potential solutions using performance and directional compatibility characteristics unique to the Gulf of Thailand. The digital project goal presented is two-fold. The first is to streamline all related data and decision processes in the office to improve work efficiency and information accessibility. The second goal is to improve field drilling performance by installation of a self-learning advisory tool. There is a requirement for multiple sub-processes to work in parallel. The population of data in the database and quality checks must be automated to handle hourly/daily data updates. A system for auto-loading drilling data from rigsite was created. A second system containing data science and machine learning was created to identify similar wells, rank their respective performance and directional compatibility to a future well of interest, and offer a statistically relevant solution recommendation. A benefit of such a system is a more efficient workflow with improved field drilling results while effectively capturing Chevron Thailand methods for many drilling engineers to use in the future. Adopting agile concept during development phase is one of the keys to success for this project. Additionally, utilization of digital transformation technology is a key enabler to handle big data, data science and data foundation.


i-com ◽  
2020 ◽  
Vol 19 (3) ◽  
pp. 215-226
Author(s):  
Maria Rauschenberger ◽  
Ricardo Baeza-Yates

Abstract When discussing interpretable machine learning results, researchers need to compare them and check for reliability, especially for health-related data. The reason is the negative impact of wrong results on a person, such as in wrong prediction of cancer, incorrect assessment of the COVID-19 pandemic situation, or missing early screening of dyslexia. Often only small data exists for these complex interdisciplinary research projects. Hence, it is essential that this type of research understands different methodologies and mindsets such as the Design Science Methodology, Human-Centered Design or Data Science approaches to ensure interpretable and reliable results. Therefore, we present various recommendations and design considerations for experiments that help to avoid over-fitting and biased interpretation of results when having small imbalanced data related to health. We also present two very different use cases: early screening of dyslexia and event prediction in multiple sclerosis.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

2020 ◽  
Vol 15 ◽  
Author(s):  
Deeksha Saxena ◽  
Mohammed Haris Siddiqui ◽  
Rajnish Kumar

Background: Deep learning (DL) is an Artificial neural network-driven framework with multiple levels of representation for which non-linear modules combined in such a way that the levels of representation can be enhanced from lower to a much abstract level. Though DL is used widely in almost every field, it has largely brought a breakthrough in biological sciences as it is used in disease diagnosis and clinical trials. DL can be clubbed with machine learning, but at times both are used individually as well. DL seems to be a better platform than machine learning as the former does not require an intermediate feature extraction and works well with larger datasets. DL is one of the most discussed fields among the scientists and researchers these days for diagnosing and solving various biological problems. However, deep learning models need some improvisation and experimental validations to be more productive. Objective: To review the available DL models and datasets that are used in disease diagnosis. Methods: Available DL models and their applications in disease diagnosis were reviewed discussed and tabulated. Types of datasets and some of the popular disease related data sources for DL were highlighted. Results: We have analyzed the frequently used DL methods, data types and discussed some of the recent deep learning models used for solving different biological problems. Conclusion: The review presents useful insights about DL methods, data types, selection of DL models for the disease diagnosis.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


Author(s):  
Sumi Helal ◽  
Flavia C. Delicato ◽  
Cintia B. Margi ◽  
Satyajayant Misra ◽  
Markus Endler

Data ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 71
Author(s):  
Gonçalo Carnaz ◽  
Mário Antunes ◽  
Vitor Beires Nogueira

Criminal investigations collect and analyze the facts related to a crime, from which the investigators can deduce evidence to be used in court. It is a multidisciplinary and applied science, which includes interviews, interrogations, evidence collection, preservation of the chain of custody, and other methods and techniques of investigation. These techniques produce both digital and paper documents that have to be carefully analyzed to identify correlations and interactions among suspects, places, license plates, and other entities that are mentioned in the investigation. The computerized processing of these documents is a helping hand to the criminal investigation, as it allows the automatic identification of entities and their relations, being some of which difficult to identify manually. There exists a wide set of dedicated tools, but they have a major limitation: they are unable to process criminal reports in the Portuguese language, as an annotated corpus for that purpose does not exist. This paper presents an annotated corpus, composed of a collection of anonymized crime-related documents, which were extracted from official and open sources. The dataset was produced as the result of an exploratory initiative to collect crime-related data from websites and conditioned-access police reports. The dataset was evaluated and a mean precision of 0.808, recall of 0.722, and F1-score of 0.733 were obtained with the classification of the annotated named-entities present in the crime-related documents. This corpus can be employed to benchmark Machine Learning (ML) and Natural Language Processing (NLP) methods and tools to detect and correlate entities in the documents. Some examples are sentence detection, named-entity recognition, and identification of terms related to the criminal domain.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-31
Author(s):  
Bjarne Pfitzner ◽  
Nico Steckhan ◽  
Bert Arnrich

Data privacy is a very important issue. Especially in fields like medicine, it is paramount to abide by the existing privacy regulations to preserve patients’ anonymity. However, data is required for research and training machine learning models that could help gain insight into complex correlations or personalised treatments that may otherwise stay undiscovered. Those models generally scale with the amount of data available, but the current situation often prohibits building large databases across sites. So it would be beneficial to be able to combine similar or related data from different sites all over the world while still preserving data privacy. Federated learning has been proposed as a solution for this, because it relies on the sharing of machine learning models, instead of the raw data itself. That means private data never leaves the site or device it was collected on. Federated learning is an emerging research area, and many domains have been identified for the application of those methods. This systematic literature review provides an extensive look at the concept of and research into federated learning and its applicability for confidential healthcare datasets.


Sign in / Sign up

Export Citation Format

Share Document