scholarly journals A Physics-Based Multidisciplinary Approach for the Preliminary Design and Performance Analysis of a Medium Range Aircraft with Box-Wing Architecture

Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 292
Author(s):  
Karim Abu Salem ◽  
Vittorio Cipolla ◽  
Giuseppe Palaia ◽  
Vincenzo Binante ◽  
Davide Zanetti

The introduction of disruptive innovations in the transport aviation sector is becoming increasingly necessary. This is because there are many very demanding challenges that the transport aviation system will have to face in the years ahead. In particular, the reduction in pollutant emissions from air transport, and its impact on climate change, clearly must be addressed; moreover, sustainable solutions must be found to meet the constantly increasing demand for air traffic, and to reduce the problem of airport saturation at the same time. These three objectives seem to be in strong contrast with each other; in this paper, the introduction of a disruptive airframe configuration, called PrandtlPlane and based on a box-wing lifting system, is proposed as a solution to face these three challenges. This configuration is a more aerodynamically efficient alternative candidate to conventional aircraft, introducing benefits in terms of fuel consumption and providing the possibility to increase the payload without enlarging the overall aircraft wingspan. The development and analysis of this configuration, applied to a short-to-medium range transport aircraft, is carried out through a multi-fidelity physics-based approach. In particular, following an extensive design activity, the aerodynamic performance in different operating conditions is investigated in detail, the structural behaviour of the lifting system is assessed, and the operating missions of the aircraft are simulated. The same analysis methodologies are used to evaluate the performance of a benchmark aircraft with conventional architecture, with the aim of making direct comparisons with the box-wing aircraft and quantifying the performance differences between the two configurations. Namely, the CeRAS CSR-01, an open-access virtual representation of an A320-like aircraft, is selected as the conventional benchmark. Following such a comparative approach, the paper provides an assessment of the potential benefits of box-wing aircraft in terms of fuel consumption reduction and increase in payload capability. In particular, an increase in payload capability of 66% and a reduction in block fuel per pax km up to 22% is achieved for the PrandtlPlane with respect to the conventional benchmark, while maintaining the same maximum wingspan.

2018 ◽  
Vol 20 (6) ◽  
pp. 640-652 ◽  
Author(s):  
Jose Manuel Luján ◽  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Alberto Reig

This work studies the effect and performance of an optimal control strategy on engine fuel efficiency and pollutant emissions. An accurate mean value control-oriented engine model has been developed and experimental validation on a wide range of operating conditions was carried out. A direct optimization method based on Euler’s collocation scheme is used in combination with the above model in order to address the optimal control of the engine. This optimization method provides the optimal trajectories of engine controls (fueling rate, exhaust gas recirculation valve position, variable turbine geometry position and start of injection) to reproduce a predefined route (speed trajectory including variable road grade), minimizing fuel consumption with limited [Formula: see text] emissions and a low soot stamp. This optimization procedure is performed for a set of different [Formula: see text] emission limits in order to analyze the trade-off between optimal fuel consumption and minimum emissions. Optimal control strategies are validated in an engine test bench and compared against engine factory calibration. Experimental results show that significant improvements in both fuel efficiency and emissions reduction can be achieved with optimal control strategy. Fuel savings at about 4% and less than half of the factory [Formula: see text] emissions were measured in the actual engine, while soot generation was still low. Experimental results and optimal control trajectories are thoroughly analyzed, identifying the different strategies that allowed those performance improvements.


Author(s):  
I. Roumeliotis ◽  
N. Aretakis ◽  
K. Mathioudakis ◽  
E. A. Yfantis

Any prime mover exhibits the effects of wear and tear over time, especially when operating in a hostile environment. Marine gas turbines operation in the hostile marine environment results in the degradation of their performance characteristics. A method for predicting the effects of common compressor degradation mechanisms on the engine operation and performance by exploiting the “zooming” feature of current performance modelling techniques is presented. Specifically a 0D engine performance model is coupled with a higher fidelity compressor model which is based on the “stage stacking” method. In this way the compressor faults can be simulated in a physical meaningful way and the overall engine performance and off design operation of a faulty engine can be predicted. The method is applied to the case of a twin shaft engine, a configuration that is commonly used for marine propulsion. In the case of marine propulsion the operating profile includes a large portion of off-design operation, thus in order to assess the engine’s faults effects, the engine operation should be examined with respect to the marine vessel’s operation. For this reason, the engine performance model is coupled to a marine vessel’s mission model that evaluates the prime mover’s operating conditions. In this way the effect of a faulty engine on vessels’ mission parameters like overall fuel consumption, maximum speed, pollutant emissions and mission duration can be quantified.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4747
Author(s):  
Sascha Krysmon ◽  
Frank Dorscheidt ◽  
Johannes Claßen ◽  
Marc Düzgün ◽  
Stefan Pischinger

The combination of different propulsion and energy storage systems for hybrid vehicles is changing the focus in the field of powertrain calibration. Shorter time-to-market as well as stricter legal requirements regarding the validation of Real Driving Emissions (RDE) require the adaptation of current procedures and the implementation of new technologies in the powertrain development process. In order to achieve highest efficiencies and lowest pollutant emissions at the same time, the layout and calibration of the control strategies for the powertrain and the exhaust gas aftertreatment system must be precisely matched. An optimal operating strategy must take into account possible trade-offs in fuel consumption and emission levels, both under highly dynamic engine operation and under extended environmental operating conditions. To achieve this with a high degree of statistical certainty, the combination of advanced methods and the use of virtual test benches offers significant potential. An approach for such a combination is presented in this paper. Together with a Hardware-in-the-Loop (HiL) test bench, the novel methodology enables a targeted calibration process, specifically designed to address calibration challenges of hybridized powertrains. Virtual tests executed on a HiL test bench are used to efficiently generate data characterizing the behavior of the system under various conditions with a statistically based evaluation identifying white spots in measurement data, used for calibration and emission validation. In addition, critical sequences are identified in terms of emission intensity, fuel consumption or component conditions. Dedicated test scenarios are generated and applied on the HiL test bench, which take into account the state of the system and are adjusted depending on it. The example of one emission calibration use case is used to illustrate the benefits of using a HiL platform, which achieves approximately 20% reduction in calibration time by only showing differences of less than 2% for fuel consumption and emission levels compared to real vehicle tests.


2014 ◽  
Vol 564 ◽  
pp. 8-12
Author(s):  
A. R. Najihah ◽  
A.A. Nuraini ◽  
Othman Inayatullah

A zero dimensional thermodynamic model simulation is developed to simulate the combustion characteristics and performance of a four stroke homogeneous compression combustion ignition (HCCI) engine fueled with gasoline. This model which applies the first law of thermodynamics for a closed system is inclusive of empirical model for predicting the important parameters for engine cycles: the combustion timing and mass burnt fraction during the combustion process. The hypothesis is the increasing intake temperature can reduce the combustion duration and the fuel consumption at wide range of equivalence ratio. The intake temperature were increased from 373-433 K with increment of 20 K. The engine was operated over a range of equivalence ratios of 0.2 to 0.5 at constant engine speed of 1200 rpm and intake pressure of 89,950 k Pa. Simulations were performed using Simulink® under different engine operating conditions. Increasing intake temperature allows reducing the combustion duration by 0.99 °CA and 0.26 °CA at equivalence ratios of 0.2 and 0.5, respectively. The brake specific fuel consumption decreases about 6.09%-5.76% at 0.2-0.5 of equivalence ratios. Thus, fuel consumption can be reduced by increasing intake temperature.


2017 ◽  
Vol 19 (8) ◽  
pp. 873-885 ◽  
Author(s):  
José Galindo ◽  
Hector Climent ◽  
Olivier Varnier ◽  
Chaitanya Patil

Nowadays, internal combustion engine developments are focused on efficiency optimization and emission reduction. Increasing focus on world harmonized ways to determine the performance and emissions on Worldwide harmonized Light vehicles Test Procedure cycles, it is essential to optimize the engines for transient operations. To achieve these objectives, the downsized or downspeeded engines are required, which can reduce fuel consumption and pollutant emissions. However, these technologies ask for efficient charging systems. This article consists of the study of different boosting architectures (single stage and two stage) with a combination of different charging systems like superchargers and e-boosters. A parametric study has been carried out with a zero-dimensional engine model to analyze and compare different architectures on the different engine displacements. The impact of thermomechanical limits, turbo sizes and other engine development option characterizations is proposed to improve fuel consumption, maximum power and performance of the downsized/downspeeded diesel engines during the transient operations.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012001
Author(s):  
L Grabowski

Abstract Simulation studies can be used to determine the fuel consumption and carbon dioxide emissions of city buses. The operating conditions of such vehicles are characterised by a very high variability of vehicle speed due to the large number of stops along the route of the bus. During vehicle testing, driving cycles are used to replicate the real-world conditions and to achieve repeatable test conditions. Such a driving cycle is a profile of speed represented as a function of time or as a function of distance. The speed profile over time can be an advantageous determinant, based on laboratory tests, for estimating fuel consumption and pollutant emissions of city buses. The research subject of this paper was the simulation of bus driving under simulated urban traffic conditions, carried out by means of the VECTO software. VECTO is a tool designed to perform the calculations of fuel consumption and carbon dioxide emissions of vehicles. It enables to model the powertrain of trucks and buses and to carry out simulations on various routes defined by driving cycles. The test object was a mega class bus, equipped with a 225 kW engine. The bus has three axles, including the rear drive axle. The scope of research included four cycles: urban, interurban, urbandelivery and interurban. Each of these was analysed in terms of speed and road gradient. The aim of this work was to perform a simulation study of the effect of the vehicle traffic conditions on the amount of CO2 emitted and fuel consumption. The obtained results were analysed.


2020 ◽  
Vol 180 (1) ◽  
pp. 8-16
Author(s):  
Hubert FRIEDL ◽  
Günter Fraidl ◽  
Paul Kapus

In the future, the simultaneous reduction of pollutant and CO2 emissions will require significantly enhanced powertrain functionalities that cannot only be adequately represented by the ICE (internal combustion engine) alone. Both automated transmissions and especially powertrain electrification can help to meet efficiently those extended requirements. The extended functionalities are no longer applied exclusively with the ICE itself ("Fully Flexible Internal Combustion Engine"), but distributed across the entire powertrain ("Fully Flexible Powertrain"). In addition, the powertrain will be fully networked with the vehicle environment and thus will utilize all data that are useful for emission and consumption-optimized operation of the ICE. Combustion engine and electrification often complement each other in a synergetic way. This makes it extremely sensible for the combustion engine to evolve in future from a "single fighter" to a "team player". If one compares the requirements of such an ICE with the definition of Industry 4.0, then there are extensive correspondences. Thus, it seems quite opportune to call such a fully networked combustion engine designed to meet future needs as “Internal Combustion Engine 4.0 (ICE 4.0)”. This even more so, as such a name can also be derived from the history: e.g. ICE 1.0 describes the combustion engines of the first mass-produced vehicles, ICE 2.0 the combustion engines emission-optimized since the 1960s and ICE 3.0 the highly optimized "Fully Flexible Combustion Engine", which currently offers a high torque and performance potential combined with low fuel consumption and pollutant emissions. In addition to further improvements in fuel consumption, the "Combustion Engine 4.0" offers such a low level of pollutant emissions that can best be described as "Zero Impact Emission". This means that such future ICE´s will no longer have a negative impact on the imission situation in urban areas. With the e-fuels topic, the ICE also has the potential to become both CO2- and pollutant-neutral in the medium and long term. This means that the ICE – also in passenger cars – will continue to be an essential and necessary cornerstone for future powertrain portfolios for the next decades.


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 665-667 ◽  
Author(s):  
Orkun Ozener

Public transportation, which uses intra city lines frequently, has vital importance on the cities air pollution. The fossil fuel based drive units, which emits pollutants, are the primary source of this interest. Also, the fuel consumption is another major concern because of economic aspects. For an efficient and clear transportation, the pollutants and fuel consumption has to be analyzed, considering the operating conditions. In this context, the Metrobus line of Istanbul city which crosses from European side to Asian side of the city was analyzed with portable emission measurement system and portable fuel consumption meter devices. The relevant bus operating data were also collected during the operation. The data were analyzed while considering the operating modes like acceleration, deceleration, and constant speed cruises. The emission factors were developed. The pollutant emissions generally decreased as the vehicle speed increased while the fuel consumption increased for the same acceleration level. These results show the importance of operating conditions and their non-linear effect on emissions and fuel consumption Istanbul public transportation.


2019 ◽  
Vol 16 (3) ◽  
pp. 276-289
Author(s):  
N. V. Savenkov ◽  
V. V. Ponyakin ◽  
S. A. Chekulaev ◽  
V. V. Butenko

Introduction. At present, stands with running drums are widely used for various types of tests. Power stands play a special role. Such stands take the mechanical power from the driving wheels of the car. This simulates the process of movement of the vehicle under operating conditions. Such equipment has various designs, principles of operation and performance. It is also used in tests that are different by purpose, development stages and types: research, control, certification, etc. Therefore, it is necessary in order to determine the traction-speed, fuel-efficient and environmental performance characteristics.Materials and methods. The paper provides the overview of the power stands with running drums, which are widespread on the domestic market. The authors carried out the analysis of the main structural solutions: schemes of force transfer between the wheel and the drum; types of loading devices; transmission layout schemes and features of the control and measuring complex. The authors also considered corresponding advantages and disadvantages, recommended spheres of application, demonstrated parameters and characteristics of the units’ workflow, presented components and equipment.Discussion and conclusions. The authors critically evaluate existing models of stands with running drums. Such information is useful for choosing serial models of stands and for developing technical tasks for designing or upgrading the equipment.


2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


Sign in / Sign up

Export Citation Format

Share Document