scholarly journals Decision Strategies for Absorbance Readings from an Enzyme-Linked Immunosorbent Assay—A Case Study about Testing Genotypes of Sugar Beet (Beta vulgaris L.) for Resistance against Beet Necrotic Yellow Vein Virus (BNYVV)

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 956
Author(s):  
Thomas M. Lange ◽  
Martin Wutke ◽  
Lisa Bertram ◽  
Harald Keunecke ◽  
Friedrich Kopisch-Obuch ◽  
...  

The Beet necrotic yellow vein virus (BNYVV) causes rhizomania in sugar beet (Beta vulgaris L.), which is one of the most destructive diseases in sugar beet worldwide. In breeding projects towards resistance against BNYVV, the enzyme-linked immunosorbent assay (ELISA) is used to determine the virus concentration in plant roots and, thus, the resistance levels of genotypes. Here, we present a simulation study to generate 10,000 small samples from the estimated density functions of ELISA values from susceptible and resistant sugar beet genotypes. We apply receiver operating characteristic (ROC) analysis to these samples to optimise the cutoff values for sample sizes from two to eight and determine the false positive rates (FPR), true positive rates (TPR), and area under the curve (AUC). We present, furthermore, an alternative approach based upon Bayes factors to improve the decision procedure. The Bayesian approach has proven to be superior to the simple cutoff approach. The presented results could help evaluate or improve existing breeding programs and help design future selection procedures based upon ELISA. An R-script for the classification of sample data based upon Bayes factors is provided.

Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 201-201 ◽  
Author(s):  
William M. Wintermantel ◽  
Teresa Crook ◽  
Ralph Fogg

Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV) and vectored by the soilborne fungus Polymyxa betae Keskin, is one of the most economically damaging diseases affecting sugar beet (Beta vulgaris L.). The virus likely originated in Europe and was first identified in California in 1983 (1). It has since spread among American sugar beet production regions in spite of vigorous sanitation efforts, quarantine, and disease monitoring (3). In the fall of 2002, mature sugar beet plants exhibiting typical rhizomania root symptoms, including proliferation of hairy roots, vascular discoloration, and some root constriction (2) were found in several fields scattered throughout central and eastern Michigan. Symptomatic beets were from numerous cultivars, all susceptible to rhizomania. Two to five sugar beet root samples were collected from each field and sent to the USDA-ARS in Salinas, CA for analysis. Hairy root tissue from symptomatic plants was used for mechanical inoculation of indicator plants. Mechanical inoculation produced necrotic lesions on Chenopodium quinoa and systemic infection of Beta vulgaris ssp. macrocarpa, both typical of BNYVV and identical to control inoculations with BNYVV. Symptomatic sugar beet roots were washed and tested using double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA) for the presence of BNYVV using standard procedures and antiserum specific for BNYVV (3). Sugar beet roots were tested individually, and samples were considered positive when absorbance values were at least three times those of greenhouse-grown healthy sugar beet controls. Samples were tested from 16 fields, with 10 confirmed positive for BNYVV. Positive samples had mean absorbance values ranging from 0.341 to 1.631 (A405nm) after 30 min. The mean healthy control value was 0.097. Fields were considered positive if one beet tested positive for BNYVV, but in most cases, all beets tested from a field were uniformly positive or uniformly negative. In addition, soil-baiting experiments were conducted on seven of the fields. Sugar beet seedlings were grown in soil mixed with equal parts of sand for 6 weeks and were subsequently tested using DAS-ELISA for BNYVV. Results matched those of the root sampling. Fields testing positive for BNYVV were widely dispersed within a 100 square mile (160 km2) area including portions of Gratiot, Saginaw, Tuscola, and Sanilac counties in the central and eastern portions of the Lower Peninsula of Michigan. The confirmation of rhizomania in sugar beet from the Great Lakes Region marks the last major American sugar beet production region to be diagnosed with rhizomania disease, nearly 20 years after its discovery in California (1). In 2002, there were approximately 185,000 acres (approximately 75,00 ha) of sugar beet grown in the Great Lakes Region, (Michigan, Ohio, and southern Ontario, Canada). The wide geographic distribution of infested fields within the Michigan growing area suggests the entire region should monitor for symptoms, increase rotation to nonhost crops, and consider planting rhizomania resistant sugar beet cultivars to infested fields. References:(1) J. E. Duffus et al. Plant Dis. 68:251, 1984. (2) J. E. Duffus. Rhizomania. Pages 29–30 in: Compendium of Beet Diseases and Insects, E. D. Whitney and J. E. Duffus eds. The American Phytopathological Society, St. Paul, MN, 1986. (3) G. C. Wisler et al. Plant Dis. 83:864, 1999.


2020 ◽  
Vol 112 ◽  
pp. 101520
Author(s):  
Kimberly M. Webb ◽  
William M. Wintermantel ◽  
Lisa Wolfe ◽  
Linxing Yao ◽  
Laura Jenkins Hladky ◽  
...  

2008 ◽  
Vol 15 (12) ◽  
pp. 1788-1795 ◽  
Author(s):  
A-Rum Shin ◽  
Sung Jae Shin ◽  
Kil-Soo Lee ◽  
Sun-Ho Eom ◽  
Seung-Sub Lee ◽  
...  

ABSTRACT Tuberculosis (TB) is the leading cause of death from a single infectious agent in Korea. In this study, we compared the proteins present in culture filtrates from Mycobacterium tuberculosis strain K, which is the dominant clinical isolate in Korea, with those present in culture filtrates from M. tuberculosis H37Rv. Several differences in expression were detected between the two strains for those proteins with a molecular mass of <20 kDa. ESAT-6, HSP-X, and CFP-10 were found to be abundantly expressed in the strain K culture filtrates by liquid chromatography-electrospray ionization-time of flight mass spectrometry. The serodiagnostic potentials of recombinant antigens rESAT-6, rHSP-X, and rCFP-10 and two native antigens (Ag85 and PstS1) were evaluated by Western blot analysis and enzyme-linked immunosorbent assay (ELISA) using sera collected from 46 TB patients with active disease and 46 healthy controls. As for our ELISA results, HSP-X was superior to the other antigens in terms of sensitivity when a single antigen was employed. The results of a receiver operator characteristic analysis revealed that a cocktail ELISA using all five antigens was significantly more sensitive (77.8%) than the use of a single antigen and offered equivalent specificity; moreover, it produced the largest area under the curve (0.91 versus 0.55 to 0.87). Therefore, a cocktail ELISA containing abundantly expressed antigens enhances the sensitivity of a single antigen and can be a useful diagnostic tool for the detection of active TB.


Plant Disease ◽  
2002 ◽  
Vol 86 (10) ◽  
pp. 1085-1088 ◽  
Author(s):  
Vilma C. Conci ◽  
Pablo Lunello ◽  
Diana Buraschi ◽  
Rusell R. Italia ◽  
Sergio F. Nome

The purpose of this work was to determine variations in titer of Leek yellow stripe virus (LYSV) throughout the crop cycle and bulb storage, and to evaluate the incidence of infected plants in the main garlic-production regions of Argentina. One hundred plants with LYSV from each of five cultivars were analyzed by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) in six different vegetative stages in White- and Red-type garlic cultivars and seven stages in cv. Rosado Paraguayo, throughout the year. In two White-type garlic cultivars, LYSV showed peaks of viral concentration in May, at the beginning of the crop cycle, and in November, just before harvest. In two Red-type garlic selections, an increase was detected in November (period of bulbing). The highest virus titers for these four garlic cultivars were detected in devernalized clove. In Rosado Paraguayo, the peak virus concentration occurred in September prior to harvesting. In a survey at 14 different localities in Argentina, 3,066 random samples were analyzed. LYSV was found in 80 to 98% of the plants from all regions, except in Santa Cruz, where 34% of plants were infected. The importance of this study is that it allows us to recommend the most suitable moment of the year to make the analysis with DAS-ELISA.


Plant Disease ◽  
1999 ◽  
Vol 83 (9) ◽  
pp. 864-870 ◽  
Author(s):  
G. C. Wisler ◽  
R. T. Lewellen ◽  
J. L. Sears ◽  
H.-Y. Liu ◽  
J. E. Duffus

Levels of beet necrotic yellow vein virus (BNYVV), as measured by triple-antibody sandwich-enzyme-linked immunosorbent assay (TAS-ELISA), were compared with biological evaluations in representative commercial and experimental sugar beet cultivars developed for production in the United States and ranging in their reactions to rhizomania from uniformly susceptible to highly resistant. TAS-ELISA was specific for BNYVV and did not react with related soilborne sugar beet viruses. Differences in absorbance (A405nm) values measured in eight cultivars closely correlated with the dosage and frequency of the Rz allele, which conditions resistance to BNYVV. A diploid (Rzrz) hybrid had a significantly lower absorbance value (less virus) than a similar triploid (Rzrzrz) hybrid. Cultivars that segregated (Rzrz:rzrz) had higher absorbance values than uniformly resistant (Rzrz) hybrids, as was expected. For all cultivars, absorbance values decreased as the season progressed. Absorbance value was significantly positively correlated with rhizomania disease index score and negatively correlated with individual root weight, plot root weight, and sugar yield. This information should be useful in resistance-breeding and -evaluation programs and in the sugar industry when considering cultivar choice, inoculum production, and future crop rotations.


2003 ◽  
Vol 69 (4) ◽  
pp. 2356-2360 ◽  
Author(s):  
Alexandre Meunier ◽  
Jean-François Schmit ◽  
Arnaud Stas ◽  
Nazli Kutluk ◽  
Claude Bragard

ABSTRACT Three soilborne viruses transmitted by Polymyxa betae KESKIN in sugar beet have been described: Beet necrotic yellow vein virus (BNYVV), the agent of rhizomania, Beet soilborne virus (BSBV), and Beet virus Q (BVQ). A multiplex reverse transcription-PCR technique was developed to simultaneously detect BNYVV, BSBV, and BVQ, together with their vector, P. betae. The detection threshold of the test was up to 128 times greater than that of an enzyme-linked immunosorbent assay. Systematic association of BNYVV with one or two different pomoviruses was observed. BVQ was detected in samples from Belgium, Bulgaria, France, Germany, Hungary, Italy, Sweden, and The Netherlands but not in samples from Turkey.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 464-468 ◽  
Author(s):  
H.-Y. Liu ◽  
J. L. Sears ◽  
R. T. Lewellen

Rhizomania is an important virus disease of sugar beet and is caused by Beet necrotic yellow vein virus (BNYVV). During 2002-03, several sugar beet fields with cultivars partially resistant to BNYVV grown in the Imperial Valley of California were observed with severe rhizomania symptoms, suggesting that resistance conditioned by Rz1 had been compromised. Soil testing with sugar beet baiting plants followed by enzyme-linked immunosorbent assay (ELISA) was used to diagnose virus infection. Resistant varieties grown in BNYVV-infested soil from Salinas, CA, were ELISA-negative. In contrast, when grown in BNYVV-infested soil collected from the Imperial Valley, CA, all resistant varieties became infected and tested positive by ELISA. Based on host reaction, eight distinct BNYVV isolates have been identified from Imperial Valley soil (IV-BNYVV) by single local lesion isolation. Reverse transcription-polymerase chain reaction (RT-PCR) assays showed that the eight IV-BNYVV isolates did not contain RNA-5. Singlestrand conformation polymorphism banding patterns for the IV-BNYVV isolates were identical to A-type and different from P-type. Sequence alignments of PCR products from BNYVV RNA-1 near the 3′ end of IV-BNYVV isolates revealed that both IV-BNYVV and Salinas BNYVV isolates were similar to A-type and different from B-type. Our results suggest that the resistancebreaking BNYVV isolates from Imperial Valley likely evolved from existing A-type isolates.


2006 ◽  
Vol 18 (4) ◽  
pp. 313-325 ◽  
Author(s):  
Britt-Louise Lennefors ◽  
Eugene I. Savenkov ◽  
Jan Bensefelt ◽  
Elisabeth Wremerth-Weich ◽  
Petra van Roggen ◽  
...  

1995 ◽  
Vol 22 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Kenya K. Kresta ◽  
Forrest L. Mitchell ◽  
J. W. Smith

Abstract The foliage of individual field-infected peanut plants (Arachis hypogaea L.) was examined by enzyme-linked immunosorbent assay (ELISA) for the presence of tomato spotted wilt virus (TSWV). TSWV was detected commonly in terminals (folded quadrifoliates) and flowers, the vector's feeding and breeding niches. Reconstructions of the assayed plants demonstrated that the virus concentration varied from plant to plant and symptoms were significantly correlated to virus concentration in individual leaves and terminals. The virus was not distributed uniformly throughout individual plants but was concentrated in young, developing terminal tissue. The presence of symptoms was indicative of detectable virus 95% of the time.


Sign in / Sign up

Export Citation Format

Share Document