scholarly journals Comparison of Efficiency-Enhanced Management and Conventional Management of Irrigation and Nitrogen Fertilization in Cotton Fields of Northwestern China

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1134
Author(s):  
Ping Wang ◽  
Zhenyong Zhao ◽  
Lei Wang ◽  
Changyan Tian

Excessive application of nitrogen fertilizers and improper methods of irrigation under conventional management are common problems in the cotton fields of northwestern China. Efficiency-enhanced management, based on the water and nitrogen dynamics and crop requirements, has been used as a valuable strategy in different crops. The present study aimed to compare efficiency-enhanced management and conventional management of irrigation and nitrogen fertilization in the cotton fields at the Junggar Basin (Shihezi) and Tarim Basin (Cele) of northwestern China. Compared with conventional management, efficiency-enhanced management reduced the amount of N fertilizer by 41% in Cele and 44% in Shihezi, and the irrigation quantity by 35% in Cele and 24% in Shihezi. However, the cotton yield under efficiency-enhanced management was similar to that found under conventional management at both the experimental sites. The efficiency-enhanced management increased the water-use efficiency (WUE) and reduced the residual soil mineralizable N (Nmin) and apparent N losses. This study indicated that efficiency-enhanced management can significantly enhance the utilization efficiency of irrigation water and N fertilizers for cotton production in the fields of northwestern China.

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 895
Author(s):  
Gintaras Šiaudinis ◽  
Algirdas Jasinskas ◽  
Egidijus Šarauskis ◽  
Regina Skuodienė ◽  
Regina Repšienė ◽  
...  

A field experiment with reed canary grass (Phalaris arundinacea L.) was carried out at LAMMC Vėžaičiai Branch (Western Lithuania) in 2010–2016 with the aim to evaluate the impact of liming and nitrogen on grass productivity, biomass chemical content and energetic parameters of the pellets. The site soil is the natural acidic loam Retisol (pH 4.2–4.6). Reed canary grass productivity was significantly affected by the year of growing and nitrogen fertilization. The average annual dry matter (DM) yield varied from 5442 to 11,114 t ha−1. The highest yields were obtained using the annual rate of 120 kg ha−1 N (nitrogen) fertilizers. Soil liming had a negligible effect on biomass productivity. Nitrogen utilization efficiency (NUE) varied greatly depending on the growing year and N fertilization rate. After analyzing the properties of reed canary grass and wood sawdust granules, it was found that the granules obtained a high density exceeding 1000 kg m−3 DM. The lowest calorific value of reed canary grass pellets was found to be quite high—17.4 MJ kg−1 DM. All harmful emissions did not exceed the permissible values. Summarizing the results, it can be stated that reed canary grass pellets may be recommended for burning in domestic boilers.


2020 ◽  
Vol 13 (2) ◽  
pp. 6
Author(s):  
J. J. Frazão ◽  
A. R. Silva ◽  
F. H. M. Salgado ◽  
R. A. Flores ◽  
E. P. F. Brasil

The increase of the efficiency of the nitrogen fertilization promotes reduction of the applied dose and decreases the losses of nitrogen (N) to the environment. The objective of this work was to evaluate the yield and the relative chlorophyll index (IRC) in cabbage crop under cover fertilization, using enhanced-efficiency nitrogen fertilizers, compared to urea, in variable doses. The experimental design was randomized blocks in a 3x4+1 factorial scheme (three sources, four rates and control), with four replications. The N sources used were: common urea (U), urea treated with urease inhibitor NBPT® (UN) and Kimcoat® polymer coated urea (UK). The N rates used were 0, 40, 80, 160 and 320 kg ha-1, divided in two fertilizations at 20 and 40 days after transplantation. Up to 160 kg ha-1 of N, there was no difference between N sources and N rates for both yield and RCI. The enhanced-efficiency N sources (UN and UK) promoted higher averages compared to common urea, possibly due to the higher N losses from common urea. Thus, the use of urease inhibitors or polymers associated with urea is a promising strategy to improve cabbage yield, as well as reducing N losses to the environment.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1291
Author(s):  
Nasr M. Abdou ◽  
Mohamed A. Abdel-Razek ◽  
Shimaa A. Abd El-Mageed ◽  
Wael M. Semida ◽  
Ahmed A. A. Leilah ◽  
...  

Sustainability of rice production under flooding conditions has been challenged by water shortage and food demand. Applying higher nitrogen fertilization could be a practical solution to alleviate the deleterious effects of water stress on lowland rice (Oryza sativa L.) in semi-arid conditions. For this purpose, field experiments were conducted during the summer of 2017 and 2018 seasons. These trials were conducted as split-split based on randomized complete blocks design with soil moisture regimes at three levels (120, 100 and 80% of crop evapotranspiration (ETc), nitrogen fertilizers at two levels (N1—165 and N2—200 kg N ha−1) and three lowland Egyptian rice varieties [V1 (Giza178), V2 (Giza177) and V3 (Sakha104)] using three replications. For all varieties, growth (plant height, tillers No, effective tillers no), water status ((relative water content RWC, and membrane stability index, MSI), physiological responses (chlorophyll fluorescence, Relative chlorophyll content (SPAD), and yield were significantly increased with higher addition of nitrogen fertilizer under all water regimes. Variety V1 produced the highest grain yield compared to other varieties and the increases were 38% and 15% compared with V2 and V3, respectively. Increasing nitrogen up to 200 kg N ha−1 (N2) resulted in an increase in grain and straw yields by 12.7 and 18.2%, respectively, compared with N1. The highest irrigation water productivity (IWP) was recorded under I2 (0.89 kg m−3) compared to (0.83 kg m−3) and (0.82 kg m−3) for I1 and I3, respectively. Therefore, the new applied agro-management practice (deficit irrigation and higher nitrogen fertilizer) effectively saved irrigation water input by 50–60% when compared with the traditional cultivation method (flooding system). Hence, the new proposed innovative method for rice cultivation could be a promising strategy for enhancing the sustainability of rice production under water shortage conditions.


Sign in / Sign up

Export Citation Format

Share Document