scholarly journals Arbuscular Mycorrhizal Communities in the Roots of Sago Palm in Mineral and Shallow Peat Soils

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1161
Author(s):  
Koki Asano ◽  
Willy Vincent Anak Kagong ◽  
Siraj Munir Bin Mohammad ◽  
Kurumi Sakazaki ◽  
Muhamad Syukrie Abu Talip ◽  
...  

Communities of arbuscular mycorrhizal fungi (AMF) in plant roots improve host plant growth. In this study, AMF communities in the roots of the sago palm (Metroxylon sagu Rottb.) were investigated in mineral soil (MS) and shallow peat soil (SPS) in Sarawak, Malaysia. MS exhibited lower moisture content (MS, 38.1; SPS, 79.8%), higher pH (H2O) (MS, 4.6; SPS, 4.1), higher soil bulk density (MS, 1.03; SPS, 0.20 g cm−3), and higher nitrogen content (MS, 16.9; SPS, 2.7 kg m−3) than SPS at the same soil depth, while the phosphorus (P) content (Bray II) (MS, 1.6; SPS, 1.9 g P2O5 m−3) was similar. The AMF colonization rate was significantly lower in SPS (39.2 ± 12.5%) than in MS (73.2 ± 4.6%). The higher number of AMF operational taxonomic units (OTUs) was detected by amplicon sequencing of the partial small-subunit rRNA gene (MS, 78; SPS, 50). A neighbor-joining tree of obtained OTUs revealed that they belonged to Acaulosporaceae, Ambisporaceae, Claroideoglomeraceae, Gigasporaceae, and Glomeraceae. The lower abundance and diversity of AMF in SPS are possibly caused by abiotic factors, including soil physicochemical properties. Glomus and Acaulospora species detected in SPS might have strong tolerance against acidity and high soil moisture content.

2014 ◽  
Vol 65 (5) ◽  
pp. 428 ◽  
Author(s):  
R. A. Reen ◽  
J. P. Thompson ◽  
T. G. Clewett ◽  
J. G. Sheedy ◽  
K. L. Bell

In Australia, root-lesion nematode (RLN; Pratylenchus thornei) significantly reduces chickpea and wheat yields. Yield losses from RLN have been determined through use of nematicide; however, nematicide does not control nematodes in Vertosol subsoils in Australia’s northern grains region. The alternative strategy of assessing yield response, by using crop rotation with resistant and susceptible crops to manipulate nematode populations, is poorly documented for chickpea. Our research tested the effectiveness of crop rotation and nematicide against P. thornei populations for assessing yield loss in chickpea. First-year field plots included canola, linseed, canaryseed, wheat and a fallow treatment, all with and without the nematicide aldicarb. The following year, aldicarb was reapplied and plots were re-cropped with four chickpea cultivars and one intolerant wheat cultivar. Highest P. thornei populations were after wheat, at 0.45–0.6 m soil depth. Aldicarb was effective to just 0.3 m for wheat and 0.45 m for other crops, and increased subsequent crop grain yield by only 6%. Canola, linseed and fallow treatments reduced P. thornei populations, but low mycorrhizal spore levels in the soil after canola and fallow treatments were associated with low chickpea yield. Canaryseed kept P. thornei populations low throughout the soil profile and maintained mycorrhizal spore densities, resulting in grain yield increases of up to 25% for chickpea cultivars and 55% for wheat when pre-cropped with canaryseed compared with wheat. Tolerance indices for chickpeas based on yield differences after paired wheat and canaryseed plots ranged from 80% for cv. Tyson to 95% for cv. Lasseter and this strategy is recommended for future use in assessing tolerance.


2014 ◽  
Vol 45 (2) ◽  
pp. 585-594 ◽  
Author(s):  
Alejandra Becerra ◽  
Norberto Bartoloni ◽  
Noelia Cofré ◽  
Florencia Soteras ◽  
Marta Cabello

Mycorrhiza ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Bo Maxwell Stevens ◽  
Jeffrey Ryan Propster ◽  
Maarja Öpik ◽  
Gail W. T. Wilson ◽  
Sara Lynne Alloway ◽  
...  

2020 ◽  
Vol 13 ◽  
pp. 117862212096919
Author(s):  
James Peter Muchoka ◽  
Daniel Njiru Mugendi ◽  
Paul Nthakanio Njiruh ◽  
Charles Onyari ◽  
Paul Kamau Mbugua ◽  
...  

The use of arbuscular mycorrhizal fungi (AMF) to enhance soil phosphate uptake is a biological technique considered to cure phosphate deficiency in soils. This study investigated association of Aspilia pruliseta Schweif shrub with AMF in Kenya. The study aims at profiling a tropical shrub with multiple ecological benefits that could reduce addition of chemical phosphatic fertilizer into the soil and reverse negative consequences of eutrophication. Sampling was purposive to have areas with or without Aspilia pruliseta vegetation growing. A small amount (10 g) of the soil from 27 composite samples was used for spore count determination and a similar amount for next generation sequencing. Spore counts varied significantly among soil textural types, sample locations, and soil depth. Sandy loam had the highest spore counts with a mean average of 404 spores. The spore count decreased significantly ( P < .05) with the depth of soil from a mean of 514 spores to 185 along the rhizosphere. The intensity of spore morphotypes was significantly higher at P < .05 for soils whose vegetation was covered with Aspilia pruliseta than those without. Aspilia pruliseta vegetation used together with sandy loam soil could culture commercial mycorrhiza fungi production for use in agrisystems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiang Dong ◽  
Xin Guo ◽  
Keyu Chen ◽  
Shijie Ren ◽  
Muhammad Atif Muneer ◽  
...  

Plants and arbuscular mycorrhizal fungi (AMF) can form complex symbiotic networks based on functional trait selection, contributing to the maintenance of ecosystem biodiversity and stability. However, the selectivity of host plants on AMF and the characteristics of plant-AMF networks remain unclear in Tibetan alpine meadows. In this study, we studied the AMF communities in 69 root samples from 23 plant species in a Tibetan alpine meadow using Illumina-MiSeq sequencing of the 18S rRNA gene. The results showed a significant positive correlation between the phylogenetic distances of plant species and the taxonomic dissimilarity of their AMF community. The plant-AMF network was characterized by high connectance, high nestedness, anti-modularity, and anti-specialization, and the phylogenetic signal from plants was stronger than that from AMF. The high connected and nested plant-AMF network potentially promoted the interdependence and stability of the plant-AMF symbioses in Tibetan alpine meadows. This study emphasizes that plant phylogeny and plant-AMF networks play an important role in the coevolution of host plants and their mycorrhizal partners and enhance our understanding of the interactions between aboveground and belowground communities.


2017 ◽  
Vol 19 ◽  
pp. 67
Author(s):  
Nor Hazwani Aziz ◽  
Norazwina Zainol ◽  
Nanthinie Thangaperumal ◽  
Nor Hanisah Zahari

<p>Flooded soil recovery was optimized using experimental design methodology by manipulating the symbiotic relationship between soil fungi, Arbuscular Mycorrhizal Fungi (AMF) and the host plant (Allium cepa L.) planted in a soil containing AMF (SA). This was achieved by measuring the amount of nutrient (nitrogen, phosphorus and potassium) uptake by AMF using HACH spectrophotometer after 14 days of planting in several condition suggested by Design-Expert® software (Ver 7.1.6). In order to determine the optimum condition for the AMF to recover the flooded soil, the experiments were designed according to a central composite design in two variables following the Response Surface Methodology (RSM). A quadratic polynomial model was generated to predict soil recovery. R2 for nitrogen, phosphorus and potassium was found at 0.89, 0.96 and 0.94 respectively of the range for the factors studied namely 24-32 ml water content and 4.0-6.0 cm depth of soil. Among two parameters, depth of soil showed significant effect on the recovery of flooded soil for phosphorus and potassium while for nitrogen both parameters showed insignificant effect. Model validation experiments showed good correspondence between experimental and predicted values at error for N, P, and K at 7.0%, 1.86% and 2.65% respectively. The optimal condition for soil recovery was at 28 ml soil water content and 5 cm soil depth. At this condition, the nutrient uptake by AMF was predicted to be at their maximum rate where the concentration of nutrients increased approximately by 2 to 3 times from the initial nutrient concentration.</p><p>Chemical Engineering Research Bulletin 19(2017) 67-74</p>


2009 ◽  
Vol 55 (7) ◽  
pp. 901-904 ◽  
Author(s):  
Patrick O’Connor ◽  
Maria Manjarrez ◽  
Sally E. Smith

A systematic application of the fungicide benomyl was used to follow up the suppression of arbuscular mycorrhizal (AM) colonization and to determine its fungitoxic activity and persistence at different depths. Repeated applications of benomyl reduced AM colonization mainly in the upper 0–4 cm layer of the treated soils. Furthermore, AM colonization decreased with soil depth. The activity and persistence of this fungicide was reduced over small changes in depth in the first 10 cm of the soil profile beneath a semiarid herbland at Brookfield Conservation Park (South Australia). Repeated applications of the fungicide only slightly increased the levels of toxicity in the soils, probably because of biodegradation of the fungicide in soils with a recent history of exposure to the fungicide. The decline in fungicide activity at depth was correlated with a decline in the suppressive effect of the fungicide on the activity of AM fungi.


2012 ◽  
Vol 78 (17) ◽  
pp. 6180-6186 ◽  
Author(s):  
E. Torrecillas ◽  
M. M. Alguacil ◽  
A. Roldán

ABSTRACTIn this study, we have analyzed and compared the diversities of the arbuscular mycorrhizal fungi (AMF) colonizing the roots of five annual herbaceous species (Hieracium vulgare,Stipa capensis,Anagallis arvensis,Carduus tenuiflorus, andAvena barbata) and a perennial herbaceous species (Brachypodium retusum). Our goal was to determine the differences in the communities of the AMF among these six plant species belonging to different families, usingB. retusumas a reference. The AMF small-subunit rRNA genes (SSU) were subjected to nested PCR, cloning, sequencing, and phylogenetic analysis. Thirty-six AMF phylotypes, belonging toGlomusgroup A,Glomusgroup B,Diversispora,Paraglomus, andAmbispora, were identified. Five sequence groups identified in this study clustered to known glomalean species or isolates: groupGlomusG27 toGlomus intraradices, groupGlomusG19 toGlomus iranicum, groupGlomusG10 toGlomus mosseae, groupGlomusG1 toGlomus lamellosum/etunicatum/luteum, and groupAmbispora1 toAmbispora fennica. The six plant species studied hosted different AMF communities. A certain trend of AMF specificity was observed when grouping plant species by taxonomic families, highlighting the importance of protecting and even promoting the native annual vegetation in order to maintain the biodiversity and productivity of these extreme ecosystems.


Sign in / Sign up

Export Citation Format

Share Document