scholarly journals Development of a Depth Control System Based on Variable-Gain Single-Neuron PID for Rotary Burying of Stubbles

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Mingkuan Zhou ◽  
Junfang Xia ◽  
Shuai Zhang ◽  
Mengjie Hu ◽  
Zhengyuan Liu ◽  
...  

Rotary burying by tractor-hitched rotary tillers is a common practice in southern China for treating rice stubbles. Currently, it is difficult to maintain stable tillage depths due to surface unevenness and the residual stubbles in the field, which leads to unstable tillage quality and nonuniform crop growth in later stages. In this study, an RTK-GNSS was used to measure the real-time height and roll angle of the tractor, and a variable-gain single-neuron PID control algorithm was designed to adjust the coefficients (KP, KI, and KD) and gain K in real-time according to the control effects. An on-board computer sent the angles of the upper swing arm u(t) to an STM32 microcontroller through a CAN bus. Compared with the current angle of the upper swing arm, the microcontroller controlled an electronic-control proportional hydraulic system, so that the height of the rotary tiller could be adjusted to follow the field undulations in real-time. Field experiments showed that when the operation speed of the tractor-rotary tiller system was about 0.61 m/s, the variable-gain single-neuron PID algorithm could effectively improve the stability of the working depth and the stubbles’ burying rate. Compared with a conventional PID controller, the stability coefficient and the stubbles’ burying rate were improved by 5.85% and 4.38%, respectively, and compared with a single-neuron PID controller, the stability coefficient and the stubbles’ burying rate were improved by 4.37% and 3.49%, respectively. This work controlled the working depth of the rotary tiller following the changes in the field surface in real-time and improved the stubbles’ burying rate, which is suitable for the unmanned operation of the rotary burying of stubbles in the future.

2011 ◽  
Vol 383-390 ◽  
pp. 1983-1987
Author(s):  
Yun Ying Qiao ◽  
Xiao Song Guo ◽  
Zhi Zhu ◽  
De Lin Cun

To overcome the nonlinear and slow-varying factor in hydraulic system and the uneasy-building model of erection system, the single neuron self-adaptive PID controller is designed. To solve the conflict between the speed and the stability in erecting, The erecting system based on virtual instrument is designed. The system uses a data acquisition card simultaneously to acquire the test data and the feedback signal and control the hydraulic system, utilizes the module method and the technique of mixed-program between LabWindows/CVI and Matlab based on ActiveX technique to design application software. The results of experiment shows that the system with high precision of testing and controlling is operated conveniently and universally and can satisfy the requirement of the erection system.


2012 ◽  
Vol 433-440 ◽  
pp. 7011-7016 ◽  
Author(s):  
Chao Bo Chen ◽  
Bing Liu ◽  
Ning He ◽  
Song Gao ◽  
Quan Pan

The accuracy and real-time of modern missile flight control system of traditional aerodynamic can not be satisfied. In this paper a new method is presented to improve the accuracy and real-time of missiles under this condition. First of all, a missile sub-channel model of the dynamic equations and steering gear is established, then based on the established model, using PID controller to control steering gear and three channels of missile pitch, yaw, roll respectively which is called missile sub-channel PID control method, and finally making use of MATLAB/Simulink to complete the simulation. Simulation results show that compared with traditional aerodynamic control system, this method can reduce the response time of aerodynamic missile and enhance the stability of the control system obviously.


2014 ◽  
Vol 556-562 ◽  
pp. 2313-2316
Author(s):  
Yu Ling

This paper designs a single neuron PID controller for the loading system which can simulate the load in the process of landing gear turning. As artificial neurons have the adaptive, self-learning and more fault-tolerant characteristics, the controller based on single neuron PID can improve performance of loading system. To assess the effectiveness of controller, united simulation between Matlab/Simulink and AMESim was conducted. Obtained results show the proposed approach is satisfactory in fast response, small overshoot, high control accuracy, strong anti-interference ability and robustness when compared with traditional PID controller.


2014 ◽  
Vol 651-653 ◽  
pp. 826-830 ◽  
Author(s):  
Xiu Jia Chen ◽  
Hong Di Qiu

The paper focuses on single neuron adaptive PID controller based on unsupervised Hebb algorithm, and simulation research on the controller is carried out for a second-order pure lag process system. Simulation results show that through learning and adjusting weights of single neuron adaptive PID controller, its online self-tuning ability can make timely adjustment of PID controller parameters according to controlled object changes and external disturbances in order to ensure that the stability and robustness of the system and, ultimately, more satisfactory actual control effect is obtained. At last, the control characteristics and parameter design rules are concluded.


Sign in / Sign up

Export Citation Format

Share Document