scholarly journals Interaction and Coupling Mechanism between Recessive Land Use Transition and Food Security: A Case Study of the Yellow River Basin in China

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Dengyu Yin ◽  
Haochen Yu ◽  
Jing Ma ◽  
Junna Liu ◽  
Gangjun Liu ◽  
...  

The Yellow River Basin (YRB) plays an important role in China’s socioeconomic development and ecological security. From the perspective of recessive land use transition (RLUT), exploring the watershed food security (FS) coordination mechanism is of strategic significance to territorial space optimization and high-quality development. To this end, a coordinated evaluation system was built for analyzing the coupling coordination degree (CCD), spatiotemporal evolution characteristics, and driving mechanism between RLUT and FS of 74 cities in the YRB from 2003 to 2018, using methods such as the coupling coordination degree model, spatial autocorrelation analysis, and the geo-detector model. The results are as follows: (1) Spatial imbalance of RLUT and FS in the YRB is significant. RLUT has significant differences between east and west, and FS has significant differences between north and south. (2) From 2003 to 2018, the CCD between RLUT and FS increased from 0.6028 to 0.6148, maintaining a steady upward trend, and the cold and hot characteristics of spatial agglomeration are significant. (3) The CCD between RLUT and FS depends on population density, average annual temperature, and average elevation. The driving effect of natural factors is higher than the socioeconomic factors on the total basin scale, but the opposite is true on the sub-basin scale. Clarifying the spatiotemporal pattern, characteristics, and mechanism of the coupling and the coordination of RLUT and FS can provide a scientific basis for territorial space planning.

Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 514
Author(s):  
Dengyu Yin ◽  
Xiaoshun Li ◽  
Guie Li ◽  
Jian Zhang ◽  
Haochen Yu

Human activities and environmental deterioration have resulted in land use transition (LUT), which seriously affects the ecosystem service value (ESV) of its region. Therefore, relevant policy measures are urgently needed. Nevertheless, research on the relationships between LUTs and ESVs from the overall watershed scale is lacking. Thus, the geo-information Tupu method was applied to analyze the dynamic patterns of LUT based on land use data from 1990, 2000, 2010, and 2018 of the Yellow River Basin (YRB). Then, a newly revised ecosystem services calculation method was utilized to the responses of ESV to LUTs. The results indicated that the Tupu units of the LUT were mainly based on the mutual transformation of grassland and unused land, and cultivated land and forestland, which were widely distributed in the upper and middle reaches of the basin. The spatial distribution was concentrated, and the expansion’s trend was also obvious. Moreover, the conversion of cultivated land into construction land was mainly distributed in the lower reaches of the basin. During 1990–2018, the total ESV fluctuated and increased (+10.47 × 108 USD) in the YRB. Thereinto, the ESV of grassland (45%) and forestland (30%) made the greatest contribution to the total ESV. As for different reaches, the ESV increased in the upstream, but decreased in the midstream and the downstream. In terms of contribution rate, the conversion of unused land into grassland (12.477%) and grassland into forestland (9.856%) were the main types to enhance the ESV in the YRB, while the conversion of forestland into grassland (−8.047%) and grassland to unused land (−7.358%) were the main types to reduce the ESV. Furthermore, the range of ecological appreciation zones was widely distributed and scattered, while the range of ecological impairment zones was gradually expanded. These findings could have theoretical support and policy implications for land use planning and environmental services in the YRB.


2010 ◽  
Vol 136 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Yaqin Qiu ◽  
Yangwen Jia ◽  
Jincheng Zhao ◽  
Xuehong Wang ◽  
Jeff Bennett ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 374 ◽  
Author(s):  
Yanfen Yang ◽  
Jing Wu ◽  
Lei Bai ◽  
Bing Wang

Gridded precipitation products are the potential alternatives in hydrological studies, and the evaluation of their accuracy and potential use is very important for reliable simulations. The objective of this study was to investigate the applicability of gridded precipitation products in the Yellow River Basin of China. Five gridded precipitation products, i.e., Multi-Source Weighted-Ensemble Precipitation (MSWEP), CPC Morphing Technique (CMORPH), Global Satellite Mapping of Precipitation (GSMaP), Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis 3B42, and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), were evaluated against observations made during 2001−2014 at daily, monthly, and annual scales. The results showed that MSWEP had a higher correlation and lower percent bias and root mean square error, while CMORPH and GSMaP made overestimations compared to the observations. All the datasets underestimated the frequency of dry days, and overestimated the frequency and the intensity of wet days (0–5 mm/day). MSWEP and TRMM showed consistent interannual variations and spatial patterns while CMORPH and GSMaP had larger discrepancies with the observations. At the sub-basin scale, all the datasets performed poorly in the Beiluo River and Qingjian River, whereas they were applicable in other sub-basins. Based on its superior performance, MSWEP was identified as more suitable for hydrological applications.


2021 ◽  
Vol 13 (5) ◽  
pp. 2715
Author(s):  
Zhongwu Zhang ◽  
Tianying Chang ◽  
Xuning Qiao ◽  
Yongju Yang ◽  
Jing Guo ◽  
...  

The ecological-economic coordination degree model is widely used to analyze eco-economic coordination relationships, but methods for determining the relative weights of the ecological and economic systems lack a scientific basis. Examining the Yellow River Basin based on Major Function-Oriented Zoning (MFOZ) in China, the study surveyed 42 experts and used the analytic hierarchy process (AHP)to calculate the ecological and economic weights of the different main function zones. It also improved the model and evaluated the coordination degree of the ecological economic system in 642counties of eight provinces in the Yellow River Basin from 1991 to 2015. The results indicate that (1) the ecological value of the basin increased from 823 billion Yuan in 2001 to 1142 billion Yuan in 2015; (2) the GDP shows a linear growth trend: high- and medium–high-value areas of per capita GDP are clustered around nine metropolitan areas, while cold spots are distributed in ecological protection and agricultural development zones; (3) the ecological and economic coordination of the river basin first rose and then declined; and (4) the coordinated development areas are concentrated in five urban agglomerations that are highly consistent with the per capita GDP hotspots.


Author(s):  
Yanhong Zhao ◽  
Peng Hou ◽  
Jinbao Jiang ◽  
Jun Zhai ◽  
Yan Chen ◽  
...  

The coupling and coordination relationship between ecology and the economy in the Yellow River Basin is a hot topic in sustainable development research. Said research has important guiding significance for the ecological security and comprehensive development of the Yellow River Basin. Taking the Yellow River Basin as the object of our study, based on the data of the economy, energy consumption data, ecology data and water resources data, we construct an indicator system of the economic development and ecological status of the Yellow River Basin and use the principal component analysis method to calculate the economic development and ecological status index. Then, we use the evaluation method, the coupling degree model and the coupling coordination degree model to analyze the time and space evolution trends of economic development and ecological state, coupling degree and coupling coordination degree. The results show that: (1) From 2000 to 2018, the economic development index of the Yellow River Basin rose steadily; the ecological status index showed a slow rise and then a downward trend. (2) The degree of coupling between economic development and ecological state has been considered as intensity coupling after 2005. The coupling trend slowly increased and then decreased, indicating that the interaction effect between the economy and ecology was first significantly enhanced and then slowly weakened. (3) The degree of coupling coordination increased from 0.2994 to 0.6266 and then decreased to 0.5917, reflecting the continuous improvement of the relationship between the regional economy and the ecological environment and the trend toward coordination. From 2015 to 2018, due to the gradual increase in the difference between economic development and ecological conditions, the coupling and coordination between the two decreased. Studies have shown that ecological construction and protection should be strengthened to ease the contradiction between the economy and ecology and achieve coordinated development.


2021 ◽  
Vol 69 (1) ◽  
pp. 29-40
Author(s):  
CaiHong Hu ◽  
Guang Ran ◽  
Gang Li ◽  
Yun Yu ◽  
Qiang Wu ◽  
...  

AbstractThe changes of runoff in the middle reaches of the Yellow River basin of China have received considerable attention owing to their sharply decline during recent decades. In this paper, the impacts of rainfall characteristics and land use and cover change on water yields in the Jingle sub-basin of the middle reaches of the Yellow River basin were investigated using a combination of statistical analysis and hydrological simulations. The Levenberg Marquardt and Analysis of Variance methods were used to construct multivariate, nonlinear, model equations between runoff coefficient and rainfall intensity and vegetation coverage. The land use changes from 1971 to 2017 were ascertained using transition matrix analysis. The impact of land use on water yields was estimated using the M-EIES hydrological model. The results show that the runoff during flood season (July to September) decreased significantly after 2000, whereas slightly decreasing trend was detected for precipitation. Furthermore, there were increase in short, intense, rainfall events after 2000 and this rainfall events were more conducive to flood generation. The “Grain for Green” project was carried out in 1999, and the land use in the middle reaches of the Yellow River improved significantly, which make the vegetation coverage (Vc) of the Jingle sub-basin increased by 13%. When Vc approaches 48%, the runoff coefficient decreased to the lowest, and the vegetation conditions have the greatest effect on reducing runoff. Both land use and climate can change the water yield in the basin, but for areas where land use has significantly improved, the impact of land use change on water yield plays a dominant role. The results acquired in this study provide a useful reference for water resources planning and soil and water conservation in the erodible areas of the middle reaches of the Yellow River basin.


2020 ◽  
Author(s):  
Jingjing Liu ◽  
Jing Wang ◽  
Ying Fang ◽  
Zehui Li

<p>The Yellow River basin, from west to east through different gradient terrains and climates, has huge spatial differences of land use and problematic eco‐environment. The understanding of relationship between land use change and agricultural production is crucial for coordinating the conflict between land development and environment protection in the Yellow River basin. In this study, the relationship between changes in arable land and urban land and changes in vegetation cover and agricultural production potential were quantitatively analyzed. Whether reclaimed land in the Yellow River basin can be converted to arable land and whether the occupation of urban land will cause ecosystem degradation were also discussed. The results indicated that: (1) Land use change in the Yellow River basin was greatly influenced by precipitation, which also affected the agricultural production potential and the Normalized Difference Vegetation Index (NDVI) in the Yellow River basin. The implementation of the Grain for Green program (GGP) had an effective restoration for vegetation cover and the resistance of soil erosion. Although the net area of arable land decreased by 71.6 ten thousand ha, the net production potential of arable land still increased by 1.7 ten thousand tons due to the inferior quality of the arable land for ecological restoration. (2) The concentrated distributed grassland and forest shrunk and the supply of ecosystem services and NDVI reduced, leading to ecological degraded in urban agglomeration regions where human activity was concentrated and construction land was increasing rapidly during the period of 2000–2015. The arable land was reduced by 43.3 ten thousand ha due to urban expansion, accounting for 59% of the total area of urban expansion, and consequently the agricultural production potential in the lower reaches was decreased. (3) Although it has not contributed significantly to agricultural production, the reclaimed land can be converted to arable land to a certain extent, due to its reasonable use for improving the ecological status of the Yellow River basin. 34.1 ten thousand ha of unused land and grassland were reclaimed for arable land under the Requisition‐Compensation Equilibrium of Farmland, which accounts for 1.27% of the total arable land. The increase of potential productivity brought by the reclamation of land for agricultural use only accounts for 0.56% of the total arable land potential productivity. However, compared with the whole Yellow River basin and the GGP region, the region with arable land reclaimed by low-coverage grassland and unused land leads to the highest increasing rate of the supply of ecosystem services and NDVI. The results could provide theoretical support and decision-making basis for further eco‐environment reconstruction, and promoting the reasonable land use and high-quality development in the Yellow River basin.</p>


Sign in / Sign up

Export Citation Format

Share Document