scholarly journals Long-Term Effect of Manure and Mineral Fertilizer Application Rate on Maize Yield and Accumulated Nutrients Use Efficiencies in North China Plain

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1329
Author(s):  
Fan Fan ◽  
Hongyan Zhang ◽  
Gabriela Alandia ◽  
Laichao Luo ◽  
Zhenling Cui ◽  
...  

Overuse of mineral fertilizer has become common at the North China Plain. Simultaneously, more organic manure resources are available for smallholder farmers. In order to increase the use of organic manure and reduce mineral fertilizer applications, a 10-year fertilization experiment with maize took place between 2008 and 2017. We assessed the long-term effects of cattle manure (CM) application and a complete nutrient substitution with mineral fertilizer (MF) at four application levels (3, 6, 9 and 12 t ha−1 CM) on yield, macronutrients (N, P and K) use efficiencies and soil conditions. Results showed that maize yields from CM and MF treatments differed across time and were significantly different in the first year of the experiment to no significant differences with increasing experimental time. In addition, increased MF levels did not result in increased maize yields; this response was different with CM applications. The highest 10-year maize average yield was 7.7 t ha−1 obtained with 9 t ha−1 of CM. Our results also showed that at the lowest application level (3 t ha−1 CM), the partial factor productivity (PFP) and the agronomic efficiency (AE) of all macronutrients were significantly higher with MF than with CM applications. Nevertheless, these differences narrowed with increased fertilizer input levels. The MF and CM recovery efficiency (RE) of N, P and K performed differently. Generally, MF exhibited significantly higher N-RE than CM treatments. CM treatments had significantly higher P-RE, but no K-RE differences were found between CM and MF. Soil available N, P and K significantly increased when fertilizer levels raised. MF treatments exhibited similar levels of soil available N, but lower soil available P and K compared with CM treatments.

2013 ◽  
Vol 149 ◽  
pp. 141-148 ◽  
Author(s):  
Xiaoqin Dai ◽  
Yunsheng Li ◽  
Zhu Ouyang ◽  
Huimin Wang ◽  
G.V. Wilson

Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 312 ◽  
Author(s):  
Amara Cisse ◽  
Adnan Arshad ◽  
Xiaofen Wang ◽  
Fanta Yattara ◽  
Yuegao Hu

The effects of long-term incorporation of organic manure and biofertilizers have been investigated on winter wheat in the North China Plain (NCP). The five-year field experiment (2013–2018) has illustrated the responses of grain yield and yield components. Seven fertilization approaches, included pig farm-yard-manure and biofertilizers amendments combined with five NPK% drop levels of chemical fertilizer ratio + organic fertilizer + biofertilizer (0, C+O+B) 25%, CL4; 50%, CL3; 75%, CL1; and 100%, CL0), without fertilizer as control (CK), in NCP during the years 2013–2018. Results showed that the grain yields of CL1 and CL2 were equivalent to CL0 in all growing seasons except 2014/2015. The grain yields of CL4 were 29.9% to 46.6% lower than that of CL0 during 2014/2015, 2016/2017, and 2017/2018. The valuable spike-number, grain number per-spike, and 1000-grain weight showed significant variations among different growing periods. Regression analysis of grain yield and yield components indicated that number grains per-spike showed significant increase in seed yield formation. The 1000-grain weight was the major parameter that influenced yield of moderate and low yielding periods, respectively. The results revealed that application of 30 m3 ha−1 pig farm-yard-manure and 20 kg ha−1 biofertilizers has reduced at least 50% of the NPK fertilization without dropping grain yields in the North China Plain.


CATENA ◽  
2020 ◽  
Vol 188 ◽  
pp. 104428 ◽  
Author(s):  
Zheng-Rong Kan ◽  
Shou-Tian Ma ◽  
Qiu-Yue Liu ◽  
Bing-Yang Liu ◽  
Ahmad Latif Virk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document