scholarly journals Development and Characteristics of Interspecific Hybrids between Brassica oleracea L. and B. napus L.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1339
Author(s):  
Piotr Kamiński ◽  
Agnieszka Marasek-Ciolakowska ◽  
Małgorzata Podwyszyńska ◽  
Michał Starzycki ◽  
Elżbieta Starzycka-Korbas ◽  
...  

Interspecific hybridization between B. oleracea inbred lines of head cabbage, Brussels sprouts, kale and B. taurica and inbred lines of rapeseed (B. napus L.) were performed aiming at the development of the new sources of genetic variability of vegetable Brassicas. Using conventional crossings and the embryo-rescue techniques the following interspecific hybrids were developed: 11 genotypes of F1 generation, 18 genotypes of F2 and F1 × F2 generations (produced after self- and cross-pollination of interspecific F1 hybrids), 10 plants of the BC1 generation (resulted from crossing head cabbage cytoplasmic male-sterile lines with interspecific hybrids of the F2 and F1 generations) and 8 plants of BC1 × (F1 × F2). No viable seeds of the BC2 generation (B. oleracea) were obtained due to the strong incompatibility and high mortality of embryos. The morphological characteristics during the vegetative and generative stages, pollen characteristics, seed development and propagation, nuclear DNA contents and genome compositions of interspecific hybrids were analyzed. All the interspecific F1 hybrids were male-fertile with a majority of undeveloped and malformed pollen grains. They showed intermediate values for morphological traits and nuclear DNA contents and had nearly triploid chromosomal numbers (27 to 29) compared with parental lines. The F2 generation had a doubled nuclear DNA content, with 52 and 56 chromosomes, indicating their allohexaploid nature. F2 hybrids were characterized by a high heterosis of morphological characteristics, viable pollen and good seed development. F1 × F2 hybrids were male-fertile with a diversified DNA content and intermediate pollen viability. BC1 plants were male-sterile with an intermediate nuclear DNA content between the F2 and head cabbage, having 28 to 38 chromosomes. Plants of the BC1 × (F1 × F2) generation were in majority male-fertile with 38–46 chromosomes, high seed set, high heterosis and intermediate values for morphological traits. The obtained interspecific hybrids are valuable as new germplasm for improving Brassica-breeding programs.

2009 ◽  
Vol 57 (6) ◽  
pp. 524 ◽  
Author(s):  
Milene Miranda Praça ◽  
Carlos Roberto Carvalho ◽  
Carolina Ribeiro Diniz Boaventura Novaes

Previous flow cytometry (FCM) analyses delivered nearly equal mean values of nuclear 2C DNA content for Eucalyptus grandis Hill ex Maiden and E. urophylla S. T. Blake (1.33 pg and 1.34 pg, respectively), whereas E. globulus Labill. presented distinct mean values (1.09, 1.13 and 1.40). These differences have been attributed to the different methodological approach, utilised plant cultivar and presence of intrinsic metabolic compounds that affect fluorochrome fluorescence. In the present study, a FCM and image cytometry (ICM) design, following international consensus criteria, were adopted to reassess the nuclear DNA contents of the above-mentioned Eucalyptus species. Statistical analyses revealed either similar or discrepant nuclear DNA contents, depending on the standard species used and whether FCM or ICM was employed. Our results demonstrated that 2C DNA values obtained by FCM and ICM were most uniform when Solanum lycopersicum was used as a standard. Moreover, the values obtained for E. grandis and E. urophylla were close, but differed as much as 24.63% in relation to previous data, and E. globulus proportionally varied up to 25%. New DNA content values are suggested for these eucalypt species.


2003 ◽  
Vol 93 (3) ◽  
pp. 364-376 ◽  
Author(s):  
Alex Collins ◽  
C. Ada N. Okoli ◽  
Anne Morton ◽  
David Parry ◽  
Simon G. Edwards ◽  
...  

Diverse isolates of the soilborne wilt fungi Verticillium dahliae and V. albo-atrum were studied to understand the nature and origins of those infecting cruciferous hosts. All isolates from cruciferous crops produced microsclerotia, and the majority produced long conidia with a high nuclear DNA content; these isolates were divided into two groups by amplified fragment length polymorphism (AFLP) analysis. One group could be subdivided by other criteria such as rRNA sequences and mitochondrial DNA restriction fragment length polymorphism (RFLP) analysis. Two crucifer isolates were short spored and had a low nuclear DNA content. The results are consistent with the crucifer isolates being interspecific hybrids. The long-spored isolates are best regarded as amphihaploids (or allodiploids) with the AFLP groups probably each representing separate interspecific hybridization events. The short-spored crucifer isolates appear to be derived from interspecific hybrids and are here called ‘secondary haploids’. Molecular evidence suggests that one parent in the crosses was similar to V. dahliae. The other parent of the amphihaploids seems to have been more similar to V. albo-atrum than to V. dahliae, but was distinct from all isolates of either species so far studied. The implications for the taxonomy of crucifer isolates are discussed and the use of the name V. longisporum, proposed elsewhere for just some of these isolates, is discouraged.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
B. J. M. Zonneveld

Genome size (C-value) was applied anew to investigate the relationships within the genus Hepatica (Ranunculaceae). More than 50 samples representing all species (except H. falconeri), from wild and cultivated material, were investigated. Species of Hepatica turn out to be diploid (), tetraploid ( ), and a possible pentaploid. The somatic nuclear DNA contents (2C-value), as measured by flow cytometry with propidium iodide, were shown to range from 33 to 80 pg. The Asiatic and American species, often considered subspecies of H. nobilis, could be clearly distinguished from European H. nobilis. DNA content confirmed the close relationships in the Asiatic species, and these are here considered as subspecies of H. asiatica. Parents for the allotetraploid species could be suggested based on their nuclear DNA content. Contrary to the increase in genome size suggested earlier for Hepatica, a significant (6%–14%) loss of nuclear DNA in the natural allopolyploids was found.


1993 ◽  
Vol 68 (1) ◽  
pp. 151-155 ◽  
Author(s):  
HR Haak ◽  
CJ Cornelisse ◽  
J Hermans ◽  
L Cobben ◽  
GJ Fleuren

A survey of work on meiotic duration in diploid plants shows that the duration is positively correlated with the DNA content per nucleus and with the mitotic cycle time. However, meiotic duration is not solely determined by the DNA content per nucleus but is also affected by chromosomal organization, DNA structure and the developmental pattern of the organism. Thus, in three polyploid plant species meiosis is much shorter and in three animal species it is much longer than would be expected in diploid plant species having corresponding DNA contents. Differences in meiotic duration in plant species are usually the result of proportional differences in all the stages of meiosis. Factors affecting the initiation, control and duration of meiosis are discussed. The consequences of changes in nuclear DNA content on developmental processes and the life cycle in plants are considered. It is suggested that DNA influences development in two ways, first directly through its informational content, and second indirectly by the physical mechanical effects of its mass independent of its informational content.


Heredity ◽  
1993 ◽  
Vol 70 (3) ◽  
pp. 294-300 ◽  
Author(s):  
A Lane Rayburn ◽  
D P Biradar ◽  
D G Bullock ◽  
L M McMurphy

AoB Plants ◽  
2011 ◽  
Vol 2011 ◽  
Author(s):  
Naomi Phillips ◽  
Donald F. Kapraun ◽  
Amelia Gómez Garreta ◽  
M. Antonia Ribera Siguan ◽  
Jorde L. Rull ◽  
...  

Abstract Background and aims Brown algae are critical components of marine ecosystems around the world. However, the genome of only one species of the class has so far been sequenced. This contrasts with numerous sequences available for model organisms such as higher plants, flies or worms. The present communication expands our coverage of DNA content information to 98 species of brown algae with a view to facilitating further genomic investigations of the class. Methodology The DNA-localizing fluorochrome DAPI (4′,6-diamidino-2-phenylindole) and the red blood cell (chicken erythrocyte) standard were used to estimate 2C values by static microspectrophotometry. Principal results 2C DNA contents are reported for 98 species of brown algae, almost doubling the number of estimates available for the class. The present results also expand the reported DNA content range to 0.2–3.6 pg, with several species of Fucales and Laminariales containing apparent polyploid genomes with 2C = 1.8–3.6 pg. Conclusions The data provide DNA content values for 12 of the 19 recognized orders of brown algae spanning the breadth of the class. Despite earlier contentions concerning DNA content and the presence of oogamy, the present results do not support a correlation between phylogenetic placement and genome size. The closest sister groups to the brown algae have genome sizes on the order of 0.3 pg (e.g. Schizocladiophyceae), suggesting that this may be the ancestral genome size. However, DNA content ranges widely across the class.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Agnieszka Marasek-Ciolakowska ◽  
Piotr Kamiński ◽  
Małgorzata Podwyszyńska ◽  
Urszula Kowalska ◽  
Michał Starzycki ◽  
...  

In Brassica, interspecific hybridisation plays an important role in the formation of allopolyploid cultivars. In this study, the ploidy of F1 and F2 generations resulting from interspecific hybridisation between B. oleracea inbred lines of head cabbage (B. oleracea L. var. capitata) (2n = 18) and kale (B. oleracea L. var. acephala) (2n = 18) with inbred lines of rapeseed (B. napus L.) (2n = 38) was examined by flow cytometry analysis and chromosome observation. Furthermore, the effect of meiotic polyploidisation on selected phenotypic and anatomical traits was assessed. The F1 hybrids of head cabbage × rapeseed (S3) and kale × rapeseed crosses (S20) were allotriploids with 2n = 28 chromosomes, and nuclear DNA amounts of 1.97 (S3) and 1.99 pg (S20). These values were intermediate between B. oleracea and B. napus. In interspecific hybrids of the F2 generation, which were derived after self-pollination of F1 hybrids (FS3, FS20) or by open crosses between F1 generation hybrids (FC320, FC230), the chromosome numbers were similar 2n = 56 or 2n = 55, whereas the genome sizes varied between 3.81 (FS20) and 3.95 pg 2C (FC230). Allohexaploid F2 hybrids had many superior agronomic traits compared to parental B. napus and B. oleracea lines and triploid F1 hybrids. In the generative stage, they were characterised by larger flowers and flower elements, such as anthers and lateral nectaries. F2 hybrids were male and female fertile. The pollen viability of F2 hybrids was comparable to parental genotypes and varied from 75.38% (FS3) to 88.24% (FC320), whereas in triploids of F1 hybrids only 6.76% (S3) and 13.46% (S20) of pollen grains were fertile. Interspecific hybrids of the F2 generation derived by open crosses between plants of the F1 generation (FC320, FC230) had a better ability to set seed than F2 hybrids generated from the self-pollination of F1 hybrids. In the vegetative stage, F2 plants had bigger and thicker leaves, larger stomata, and significantly thicker layers of palisade and spongy mesophyll than triploids of the F1 generation and parental lines of B. oleracea and B. napus. The allohexaploid F2 hybrids analysed in this study can be used as innovative germplasm resources for further breeding new vegetable Brassica crops at the hexaploid level.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 442A-442
Author(s):  
Mihoko Tamura ◽  
Ryutaro Tao ◽  
Akira Sugiura

Interspecific hybrids between Diospyros glandulosa (2n = 2x = 30) and D. kaki cv. Jiro (2n = 6x = 90) were produced by electrofusion of protoplasts. Protoplasts were isolated from calli derived from leaf primordia, fused electrically, and cultured by agarose-bead culture using modified KM8p medium. Relative nuclear DNA contents of calli derived from fusion-treated protoplasts were determined by flow cytometry. One-hundred-forty-nine of 166 calli obtained had the nuclear DNA content of the sum of those of D. glandulosa and D. kaki cv. Jiro. RAPD analysis showed that the 149 callus lines yielded specific bands for both D. glandulosa and D. kaki cv. Jiro and they appeared to be interspecific somatic hybrid calli. Shoots were regenerated from 63 of the 149 interspecific hybrid calli. PCR-RFLP of chloroplast DNA analysis, flow cytometric determination of nuclear DNA content, and RAPD analysis revealed that the 63 interspecific hybrid shoot lines contained nuclear genome from both the parents but only chloroplast genome from D. glandulosa. Microscopic observation of root tip cells confirmed that somatic chromosome numbers of the interspecific hybrids were 2n = 8x = 120.


2014 ◽  
Vol 71 (3) ◽  
pp. 195-200
Author(s):  
Hanna Kuran ◽  
Kazimierz Marciniak

Mitotic activity and nuclear DNA content in endosperm of <em>Zea mays</em> cv. Złota Karłowa were examined. DNA content was cytophotometrically measured on squashed preparations after Feulgen procedure. Mitotic activity in endosperm was determined till the stage when embryo sack reached 4.5 mm in length. Some of mitotic figures show multiplied DNA content. Endosperm nuclei have various DNA contents which increase throughout endosperm development. DNA content enhancement indicates endoreduplication in progress. Some nuclei with high DNA content display changes in chromatin structure, which are expressed by the presence of strands and aggregates of chromatin characterised by high staining intensity. A conclusion has been drawn that mitotic divisions and the endoreduplication phase of nuclear DNA may occur simultaneously and dominate one over another at different phases of endosperm development.


Sign in / Sign up

Export Citation Format

Share Document