scholarly journals Evaluating the Impact of Alternative Cropping Systems on Groundwater Consumption and Nitrate Leaching in the Piedmont Area of the North China Plain

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1635
Author(s):  
Meiying Liu ◽  
Leilei Min ◽  
Yanjun Shen ◽  
Lin Wu

The overexploitation of groundwater and the excessive application of nitrogen (N) fertilizer under the intensive double cropping system are responsible for the groundwater level decline and potential contamination in the North China Plain (NCP). Alternative cropping systems have the potential to alleviate current groundwater and N problems in the region, while there are limited studies simultaneously focusing on the impact of a change of cropping systems on crop yields, groundwater consumption, and N leaching. In this study, Field observed experiments of double-cropping system (i.e., winter wheat–summer maize) and mono-cropping system (early sowing maize) were used to calibrate and validate the Root Zone Water Quality Model (RZWQM2). Then, the validated RZWQM2 model was used to evaluate the long-term crop growth and environmental impact under the local winter wheat–summer maize rotation system with practical irrigation (WW-SM_pi) and auto-irrigation (WW-SM_ai), and three alternative cropping systems (single early maize, SEM; winter wheat–summer maize and single early maize, WW-SM-SEM; winter wheat-summer maize and double single early maize, WW-SM-2SEM). The net consumption of groundwater and N leaching under WW-SM_pi were 226.9 mm yr−1 and 79.7 kg ha−1 yr−1, respectively. Under the local rotation system, auto-irrigation could increase crop yields and N leaching. Compared with the WW-SM_ai, the alternative cropping systems, WW-SM-SEM, WW-SM-2SEM, and SEM, significantly decreased the net consumption of groundwater by 49.3%, 63.0%, and 97.8%, respectively (147.5–292.9 mm), and N leaching by 53.5%, 67.5%, and 89.6%, respectively (50.0–83.7 kg ha−1). However, the yields of the three alternative cropping systems were reduced by less than 30% (12.2%, 20.1%, and 29.7%, respectively). The simulated results indicated that appropriately decreasing the planting frequency of winter wheat is an effective approach to reduce groundwater overexploitation and N contamination with a relatively limited reduction in grain yields. The results could provide a scientific basis for cropping system adjustment in guaranteeing sustainable regional water and grain policy.

2020 ◽  
Vol 12 (11) ◽  
pp. 4588
Author(s):  
Huanyuan Wang ◽  
Baoguo Li ◽  
Liang Jin ◽  
Kelin Hu

The North China Plain (NCP) is one of the most important grain production regions in China. However, it currently experiences water shortage, severe nonpoint source pollution, and low water and N use efficiencies (WUE and NUE). To explore sustainable agricultural development in this region, a field experiment with different cropping systems was conducted in suburban Beijing. These cropping systems included a winter wheat and summer maize rotation system for one year (WM), three harvests (winter wheat-summer maize-spring maize) in two years (HT), and continuous spring maize monoculture (CS). Novel ways were explored to improve WUE and NUE and to reduce N loss via the alternative cropping system based on the simulation results of a soil-crop system model. Results showed that the annual average yields were ranked as follows: WM > HT > CS. The N leaching of WM was much larger than that of HT and CS. WUE and NUE were ranked as follows: WM < HT < CS. Comprehensive evaluation indices based on agronomic and environmental effects indicated that CS or HT have significant potential for approaches characterized by water-saving, fertilizer-saving, high-WUE, and high-NUE properties. Once spring maize yield reached an ideal level HT and CS became a high-yield, water-saving, and fertilizer-saving cropping systems. Therefore, this method would be beneficial to sustainable agricultural development in the NCP.


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 156-163
Author(s):  
Wang Dapeng ◽  
Zheng Liang ◽  
Gu Songdong ◽  
Shi Yuefeng ◽  
Liang Long ◽  
...  

Excessive nitrogen (N) and water input, which are threatening the sustainability of conventional agriculture in the North China Plain (NCP), can lead to serious leaching of nitrate-N (NO<sub>3</sub><sup>–</sup>-N). This study evaluates grain yield, N and water consumption, NO<sub>3</sub><sup>–</sup>-N accumulation and leaching in conventional and two optimized winter wheat-summer maize double-cropping systems and an organic alfalfa-winter wheat cropping system. The results showed that compared to the conventional cropping system, the optimized systems could reduce N, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching by 33, 35 and 67–74%, respectively, while producing nearly identical grain yields. In optimized systems, soil NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was about 80 kg N/ha most of the time. In the organic system, N input, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching was reduced even more (by 71, 43 and 92%, respectively, compared to the conventional system). However, grain yield also declined by 46%. In the organic system, NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was generally less than 30 kg N/ha. The optimized systems showed a considerable potential to reduce N and water consumption and NO<sub>3</sub><sup>–</sup>-N leaching while maintaining high grain yields, and thus should be considered for sustainable agricultural development in the NCP.  


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 1087-1101 ◽  
Author(s):  
D. Tsozué ◽  
J. P. Nghonda ◽  
D. L. Mekem

Abstract. The impact of direct-seeding mulch-based cropping systems (DMC), direct seeding (DS) and tillage seeding (TS) on Sorghum yields, soil fertility and the rehabilitation of degraded soils was evaluated in northern Cameroon. Field work consisted of visual examination, soil sampling, yield and rainfall data collection. Three fertilization rates (F1: 100 kg ha−1 NPK + 25 kg ha−1 of urea in DMC, F2: 200 kg ha−1 NPK + 50 kg ha−1 of urea in DMC and F3: 300 kg ha−1 NPK + 100 kg ha−1 of urea in DMC) were applied to each cropping system (DS, TS and DMC), resulting in nine experimental plots. Two types of chemical fertilizer were used (NPK 22.10.15 and urea) and applied each year from 2002 to 2012. Average Sorghum yields were 1239, 863 and 960 kg ha−1 in DMC, DS and TS, respectively, at F1, 1658, 1139 and 1192 kg ha−1 in DMC, DS and TS, respectively, at F2, and 2270, 2138 and 1780 kg ha−1 in DMC, DS and TS, respectively, at F3. pH values were 5.2–5.7 under DMC, 4.9–5.3 under DS and TS and 5.6 in the control sample. High values of cation exchange capacity were recorded in the control sample, TS system and F1 of DMC. Base saturation rates, total nitrogen and organic matter contents were higher in the control sample and DMC than in the other systems. All studied soils were permanently not suitable for Sorghum due to the high percentage of nodules. F1 and F2 of the DS were currently not suitable, while F1 and F3 of DMC, F3 of DS and F1, F2 and F3 of TS were marginally suitable for Sorghum due to low pH values.


Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 536 ◽  
Author(s):  
Kangkang He ◽  
Yonghui Yang ◽  
Yanmin Yang ◽  
Suying Chen ◽  
Qiuli Hu ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 696 ◽  
Author(s):  
Shah Jahan Leghari ◽  
Kelin Hu ◽  
Hao Liang ◽  
Yichang Wei

The North China Plain (NCP) is experiencing serious groundwater level decline and groundwater nitrate contamination due to excessive water pumping and application of nitrogen (N) fertilizer. In this study, grain yield, water and N use efficiencies under different cropping systems including two harvests in 1 year (winter wheat–summer maize) based on farmer (2H1Y)FP and optimized practices (2H1Y)OPT, three harvests in 2 years (winter wheat–summer maize–spring maize, 3H2Y), and one harvest in 1 year (spring maize, 1H1Y) were evaluated using the water-heat-carbon-nitrogen simulator (WHCNS) model. The 2H1YFP system was maintained with 100% irrigation and fertilizer, while crop water requirement and N demand for other cropping systems were optimized and managed by soil testing. In addition, a scenario analysis was also performed under the interaction of linearly increasing and decreasing N rates, and irrigation levels. Results showed that the model performed well with simulated soil water content, soil N concentration, leaf area index, dry matter, and grain yield. Statistically acceptable ranges of root mean square error, Nash–Sutcliffe model efficiency, index of agreement values close to 1, and strong correlation coefficients existed between simulated and observed values. We concluded that replacing the prevalent 2H1YFP with 1H1Y would be ecofriendly at the cost of some grain yield decline. This cropping system had the highest average water use (2.1 kg m−3) and N use efficiencies (4.8 kg kg–1) on reduced water (56.64%) and N (81.36%) inputs than 2H1YFP. Whereas 3H2Y showed insignificant results in terms of grain yield, and 2H1YFP was unsustainable. The 2H1YFP system consumed a total of 745 mm irrigation and 1100 kg N ha–1 in two years. When farming practices were optimized for two harvests in 1 year system (2H1Y)OPT, then grain yield improved and water (18.12%) plus N (61.82%) consumptions were minimized. There was an ample amount of N saved, but water conservation was still unsatisfactory. However, considering the results of scenario analyses, it is recommended that winter wheat would be cultivated at <200 mm irrigation by reducing one irrigation event.


2006 ◽  
Vol 21 (2) ◽  
pp. 77-83 ◽  
Author(s):  
Jon T. Biermacher ◽  
Francis M. Epplin ◽  
Kent R. Keim

The majority of cropland in the rain-fed region of the North Central District of Oklahoma in the US is seeded with winter wheat (Triticum aestivum) and most of it is in continuous wheat production. When annual crops are grown in monocultures, weed species and disease agents may become established and expensive to control. For many years prior to 1996, federal policy provided incentives for District producers to grow wheat and disincentives to diversify. In 1996, the Federal Agriculture Improvement and Reform (FAIR) Act (Freedom to Farm Act) was instituted, followed by the Farm Security and Rural Investment Act (FSRIA) in 2002. The objective of this study was to determine the impact of FAIR and FSRIA programs on crop diversity in the North Central District of Oklahoma. The economics of three systems, monoculture continuous winter wheat, continuous soybean (Glycine max) and a soybean–winter wheat–soybean rotation, were compared using cash market prices (CASH), CASH plus the effective loan deficiency payments (a yield-dependent subsidy) of the FAIR Act of 1996, and CASH plus the effective loan deficiency payments of the FSRIA of 2002. We found that the loan deficiency payment structure associated with FAIR provided a non-market incentive that favored soybean. However, under provisions of the 2002 FSRIA, the incentive for soybean was adjusted, resulting in greater expected returns for continuous wheat. Due to erratic weather, soybean may not be a good alternative for the region. Research is needed to identify crops that will fit in a rotation with wheat.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2946
Author(s):  
Jia Yang ◽  
Jixiao Cui ◽  
Ziqin Lv ◽  
Mengmeng Ran ◽  
Beibei Sun ◽  
...  

The winter wheat–summer maize double cropping system caused overexploitation of groundwater in the North China Plain; it is unsustainable and threatens food security and the overall wellbeing of humankind in the region. Finding water-saving cropping systems without compromising food security is a more likely solution. In this study, six alternative cropping systems’ water conservation and food supply capacity were compared simultaneously. A combined water footprint method was applied to analyze the cropping systems’ water consumption. The winter wheat–summer maize system had the largest water consumption (16,585 m3/ha on average), followed by the potato/spring maize, spinach–spring maize, rye–spring maize, vetch–spring maize, pea/spring maize, soybean||spring maize and mono-spring maize cropping systems. For the groundwater, the spinach–spring maize, pea/spring maize, soybean||spring maize systems showed a higher degree of synchronization between crop growth period and rainfall, which could reduce use of groundwater by 36.8%, 54.4% and 57.6%, respectively. For food supply capacity, the values for spinach–spring maize, pea/spring maize, soybean||spring maize systems were 73.0%, 60.8% and 48.4% of winter wheat–summer maize, respectively, but they showed a better feeding efficiency than the winter wheat–summer maize system. On the whole, spinach–spring maize may be a good option to prevent further decline in groundwater level and to ensure food security in a sustainable way.


Sign in / Sign up

Export Citation Format

Share Document