scholarly journals High Soil Phosphorus Application Significantly Increased Grain Yield, Phosphorus Content but Not Zinc Content of Cowpea Grains

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 802
Author(s):  
Saba B. Mohammed ◽  
Daniel K. Dzidzienyo ◽  
Adama Yahaya ◽  
Muhammad L. Umar ◽  
Muhammad F. Ishiyaku ◽  
...  

To ameliorate the impact of soil phosphorus (P) deficiency on cowpea, the use of P-based fertilizers is recommended. Plant zinc (Zn) is an essential nutrient required by plants in a wide range of processes, such as growth hormone production and metabolism. However, a negative association between plant Zn content and high P application has been reported in some crops. There are few reports about soil P application and plant Zn content relationship on cowpea. Thus, this study investigated the response of cowpeas to three P rates in the screenhouse (0, 1.5, and 30 mg P/kg) and field (0, 10, and 60 kg P2O5/ha) and their effects on plant P and Zn content, biomass, and grain yield. In the screenhouse, shoot and root dry weights, and shoot P and Zn content were measured. Shoot dry weight, grain yield, grain P, and Zn contents were determined from field plants. Higher rates of P led to increased shoot biomass and grain yield of the field experiment but were not associated with a significant change in shoot or grain Zn content. There was not a significant correlation between grain yield and Zn content in high soil P (p < 0.05). The effect of higher P application on reduced plant Zn contents may be genotype-dependent and could be circumvented if genotypes with high Zn content under high soil P are identified.

2021 ◽  
Author(s):  
Saba Baba Mohammed ◽  
Daniel K. Dzidzienyo ◽  
Adama Yahaya ◽  
Muhammad L. Umar ◽  
Muhammad F. Ishiyaku ◽  
...  

Abstract Background and aims Phosphorus (P) is limiting in many soils of cowpea producing areas. To ameliorate the impact of soil P deficiency, the use of P-based fertilizers is highly recommended. However, a negative association between zinc (Zn) content and high P application has been reported in some crops. There are few reports about P-Zn interaction on cowpea. Thus, in this study, the response of cowpea to the varying amounts of P and their effect on plant P and Zn content, and yield were investigated.Methods Thirty genotypes were grown at three P rates in screenhouse and field environments. In the screenhouse, shoot biomass, P and Zn content were measured at 55 days after sowing. In the field, grain yield, P, and Zn content were determined in the harvested tissues when plants reached full maturity.Results Higher rates of P in the growth media led to significantly increased shoot biomass, and grain yield but were not associated with a significant change in shoot or grain Zn content. There was not a significant correlation between grain yield and Zn content in high soil P (p < 0.05). The site regression analysis revealed that the first two principal components explained 69.76%, and 22.30% of total variance for grain yield, and 69.01% & 24.66% of total variance for Zn content.Conclusions The effect of higher P application on reduced shoot and grain Zn content may be genotype-dependent and could be circumvented if genotypes with high Zn content under higher P supply are identified and cultivated.


2019 ◽  
Vol 11 (17) ◽  
pp. 4799
Author(s):  
Wenting Jiang ◽  
Xiaohu Liu ◽  
Xiukang Wang ◽  
Lihui Yang ◽  
Yuan Yin

Optimizing the phosphorus (P) application rate can increase grain yield while reducing both cost and environmental impact. However, optimal P rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. The present study used field experiment conducted at 36 experiments sites for maize to determine the impact of P application levels on grain yield, plant P uptake, and P agronomy efficiency (AEP), P-derived yield benefits and private profitability, and to evaluated the agronomically (AOPR), privately (POPR), and economically (EOPR) optimal P rate at a regional scale. Four treatments were compared: No P fertilizer (P0); P rate of 45–60 kg ha−1 (LP); P rate of 90–120 kg ha−1 (MP); P rate of 135–180 kg ha−1 (HP). P application more effectively increased grain yield, reaching a peak at MP treatment. The plant P uptake in HP treatment was 37.4% higher than that in P0. The relationship between P uptake by plants (y) and P application rate (x) can be described by the equation y = −0.0003x2 + 0.1266x + 31.1 (R2 = 0.309, p < 0.01). Furthermore, grain yield (y) and plant P uptake (x) across all treatments also showed a significant polynomial function (R2 = 0.787–0.846). The MP treatment led to highest improvements in P agronomic efficiency (AEP), P-derived yield benefits (BY) and private profitability (BP) compared with those in other treatments. In addition, the average agronomically (AOPR), privately (POPR), and economically optimal P rate (EOPR) in 36 experimental sites were suggested as 127.9 kg ha−1, 110.8 kg ha−1, and 114.4 kg ha−1, which ranged from 80.6 to 211.3 kg ha−1, 78.2 to 181.8 kg ha−1, and 82.6 to 151.6 kg ha−1, respectively. Economically optimal P application (EOPR) can be recommended, because EOPR significantly reduced P application compared with AOPR, and average economically optimal yield was slightly higher compared with the average yield in the MP treatment. This study was conducive in providing a more productive, use-effective, profitable, environment-friendly P fertilizer management strategy for supporting maximized production potential and environment sustainable development.


2015 ◽  
Vol 4 (4) ◽  
pp. 109 ◽  
Author(s):  
Williams Kwame Atakora ◽  
Mathias Fosu ◽  
S. O. Abebrese ◽  
Michael Asante ◽  
Matthias Wissuwa

<p>Phosphorus (P) deficiency is a major constraint to upland rice production on highly weathered, low activity clay soils in the humid zones of West Africa. There is a paucity of information on the short-term fertilizer P effects on rice on these soils. A field experiment was conducted in 2011 to determine the response of twenty-four (24) upland rice cultivars to fertilizer Phosphorus (P) applied at 0 and 60 kg P ha<sup>−1</sup>. An uncultivated field at SARI research area with available P (Bray 1) P content of 3.0 mg/kg was used for the experiment.</p> <p>The ploughed area was divided into two plots with one plot for +P and the other for -P treatment. Each of the 24 varieties was allocated three rows and spaced at 20 x 10 cm in four replications. The varieties were randomized for each replicate and planted on 2<sup>nd</sup> July 2011 at one seed per hill. Pre-emergence herbicide Pendimethaline 400 g/l (Alligator) was applied at 3.2 L/ha two days after planting followed by one hand weeding. For the (-) P plot, the entire field received N at 60 kg/ha as Sulphate of ammonia and K<sub>2</sub>O at 60 kg/ha as Muriate of Potash. For the (+) P plot, fertilizer was applied at NPK 60-60-60 kg/ha from Sulphate of ammonia, Triple superphosphate and Muriate of potash, respectively. For each plot, the N was split applied.</p> Results showed that the plants that received P were more vigorous and healthier. There was significant variety effect on number of tillers per plant (NOTPP), days to 50% flowering (DFF), days to maturity (DTM), dry weight of biomass (DWOB), number of panicles per plant (NOPPP), and grain yield per plant. Similarly, there was significant phosphorus effect on number of tillers per plant (NOTPP), days to 50% flowering (DFF), days to maturity (DTM), dry weight of biomass (DWOB), number of panicles per plant (NOPPP), and grain yield per plant. There was generally no interactive effect of variety by fertilizer except for DFF and DTM. The number of tillers per plant ranges from 3 – 16 with the overall mean without P application being 4 while overall mean with P application was 9. When P was applied, the number of days to 50 % flowering reduced from 86 days to 79 days. Days to maturity (DTM) was also reduced from 118 to 111 on average by P application. The varieties that were most tolerant to low P were ITA 257, Nerica 3 and TOX 1011-4-A2. The grain yield of ITA 257 remained the same whether P was applied or not. This is the variety that is best adapted to low P. We concluded that rice growth and yield components were affected by Phosphorus application. Plants that received phosphorus flowered and matured earlier. They also accumulated higher biomass and grain yield. ITA 257, Nerica 3 and TOX 1011-4-A2 were most tolerant to P deficiency.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 158
Author(s):  
Jiang Tian ◽  
Fei Ge ◽  
Dayi Zhang ◽  
Songqiang Deng ◽  
Xingwang Liu

Phosphorus (P) is a vital element in biological molecules, and one of the main limiting elements for biomass production as plant-available P represents only a small fraction of total soil P. Increasing global food demand and modern agricultural consumption of P fertilizers could lead to excessive inputs of inorganic P in intensively managed croplands, consequently rising P losses and ongoing eutrophication of surface waters. Despite phosphate solubilizing microorganisms (PSMs) are widely accepted as eco-friendly P fertilizers for increasing agricultural productivity, a comprehensive and deeper understanding of the role of PSMs in P geochemical processes for managing P deficiency has received inadequate attention. In this review, we summarize the basic P forms and their geochemical and biological cycles in soil systems, how PSMs mediate soil P biogeochemical cycles, and the metabolic and enzymatic mechanisms behind these processes. We also highlight the important roles of PSMs in the biogeochemical P cycle and provide perspectives on several environmental issues to prioritize in future PSM applications.


2003 ◽  
Vol 60 (3) ◽  
pp. 559-564 ◽  
Author(s):  
Edemar Joaquim Corazza ◽  
Michel Brossard ◽  
Takashi MuraokaI ◽  
Maurício Antonio Coelho Filho

Studies on soil phosphorus (P) of low productivity cultivated pastures in Cerrado (Brazilian Savanna) areas and surveys on other possible problems related to P are scarce. The spatial variability of soil phosphorus content of a Rhodic Ferralsol was studied in a low productivity pasture of Brachiaria brizantha (BB) grown for 10 years, without fertilizer application, in an experimental area at Planaltina (GO), Brazil. Soil samplings were performed on a regular grid of 10 by 10 meters, with 98 sampling points before (between tussocks and under tussocks) and after the establishment of the experiment (after fertilizing). On the same grid, forage plants were collected and separated into fractions for N and P content analyses. Soil available phosphate was determined by the resin method (Pr) and complemented by the 32P isotopic exchange kinetics analysis. Descriptive statistical and geostatistical analyses were utilized to describe the spatial variability. The Pr content on soil samples under tussocks presented mean and median values 45% larger than in soil samples taken between tussocks. The higher variation is probably related to the greater concentration of BB roots, soil organic matter content and soil P recycled through the plants tussocks. The spatial variability of Pr in this soil was high especially after fertilizer application. This variable did not present spatial dependence for the regular 10 m sampling. The generated knowledge on P variability of soils under low productivity cultivated pastures revealed problems related to the sampling methodology traditionally utilized and to P application.


Soil Systems ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 61 ◽  
Author(s):  
Carlos ◽  
Francisco ◽  
Wedisson ◽  
Leonardus ◽  
Jörg ◽  
...  

Bulk soil phosphorus speciation by X-ray absorption spectroscopy (XAS) using fluorescence yield-mode measurements is an important tool for phosphorus research because of the low soil P contents. However, when measuring in fluorescence mode, increasing the concentration of the absorbing atom can dampen the XAS spectral features because of self-absorption and affect the linear combination (LC) fitting results. To reduce the self-absorption for samples of high P contents, thick boron nitride diluted samples are produced, yet the effects of self-absorption on P speciation results via LC fitting of P K-edge XANES spectroscopy, and the possible benefits of data processing optimization are unknown. Toward this end, we produced a series of ternary standard mixtures (calcium-iron-aluminum phosphates) and an example soil sample both diluted using boron nitride over a range from 1 to ~900 mmol kg−1 for the soil sample and up to ~6000 mmol kg−1 for the standard mixture. We show that by optimizing background subtraction and normalization values, consistent results with less than 10% error can be obtained for samples with up to 300 mmol kg−1 P. Our results highlight the applicability of optimized P K-edge XANES fitting across a wide range of concentrations encountered in natural environments.


1994 ◽  
Vol 34 (2) ◽  
pp. 173
Author(s):  
KA Shaw ◽  
MA Gilbert ◽  
JD Armour ◽  
MJ Dwyer

A field experiment was established to define the phosphorus (P) requirement for establishment and maintenance of a mixed legume pasture (Stylosanthes scabra cv. Seca, S. hamata cv. Verano, S. guianensis cv. Graham, Macroptilium atropurpureum cv. Siratro) introduced into a native grass pasture on an infertile duplex red earth. Rates of 0, 5, 10, 20, and 40 kg P/ha were applied to separate plots in year 1 (1982), 2, and 3. In year 5 (1986 growing season), half of each plot that had received 20 and 40 kg P/ha in year 3 was refertilised at the original rate to ensure that maximum yields were defined. Bicarbonate- or acid-extractable soil P concentrations of 8 mg/kg were sufficient for 80% maximum legume yield. The residual value of applied P in the surface soil, as measured by soil analysis, decreased exponentially, but an initial application of 40 kg P/ha was still sufficient to produce near-maximum legume yield after 5 years. Phosphorus application increased the dry matter yield of legume. During the establishment phase (years 1 and 2 after planting) yields reached maximum at 10 and 20 kg P/ha, respectively, but increased linearly in subsequent years. When the original rates were reapplied in year 5, peak yield occurred at 20 + 20 kg P/ha, and there was no difference between this yield and that from plots receiving 40 kg P/ha in year 1. Native grass yields increased with P application only in years 4 and 5 of the experiment. Stylos demonstrated good tolerance to low P supply. In year 1, 80% of the total legume yield consisted of Graham stylo and Siratro, whereas in subsequent years, Seca and Verano made up 70 and 20%, respectively, of the total, irrespective of treatment. Yield of legume at nil P, relative to maximum, increased from 5% in year 1 to 42% in year 5.


2007 ◽  
Vol 47 (8) ◽  
pp. 984 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

The effect of fertiliser phosphorus (P) and nitrogen (N) on seed (grain) yield and concentration of oil and protein in grain of canola (oil-seed rape; Brassica napus L.) was measured in two field experiments undertaken at eight sites from 1993–2005 in south-western Australia, on soils deficient in P and N. Six rates of P (0–40 kg P/ha as single superphosphate) and four rates of N (0–138 kg N/ha as urea) were applied. Significant grain yield increases (responses) to applied P occurred in both experiments and these responses increased as rates of applied N increased. For grain production, the P × N interaction was significant in all eight years and locations of the two experiments. Application of P had no effect on concentration of oil and protein in grain. Application of N always decreased the concentration of oil and increased the concentration of protein in grain. For canola grain production in the region, responses to applied N always occur whereas responses to applied P are rare, but if soil P testing indicates likely P deficiency, both P and N fertiliser need to be applied.


1986 ◽  
Vol 26 (1) ◽  
pp. 115 ◽  
Author(s):  
AL Garside ◽  
MC Fulton

The primary and residual effects of phosphorus (P) fertilizer on soybeans (Glycine max cv. Buchanan) were studied at one site for three seasons on Cununurra clay in the Ord Irrigation Area. Grain yield increased (P< 0.01) with both primary and residual P in all seasons. When grain yields over the 3 years were standardized to eliminate seasonal effects, relative grain yield (RGY) was positively related to each of bicarbonate-extractable soil P (EP), applied fertilizer P (FP) and fertilizer P applied to the previous crop (PFP). Seventy-three per cent of the variation in relative yield within years could be explained by the equation: RGY = 45.44 + 0.64FP + l.84EP + 0.197PFP R 2 = 0 . 7 3 , P < 0.01 Increasing P status was associated with increased plant height, dry matter production and weight of 100 seeds and increased the number of main-stem nodes, nodules, pods per plant and days to maturity, but had no effect on number of seeds per pod and number of days until commencement and completion of flowering. Concentrations of P in the whole tops and uppermost leaf increased with increasing rate of P application. However, there was a significant P x growth stage interaction on nitrogen concentrations in whole tops and upper-most leaf, these being lower in the high-P plots early in the season. Grain protein content increased with increasing P status while oil content was reduced. The results show that rates of P application higher than those being currently used are required to maximize soybean yield on Cununurra clay.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1716
Author(s):  
Wei Zhang ◽  
Chunqin Zou ◽  
Xiuxiu Chen ◽  
Yumin Liu ◽  
Dunyi Liu ◽  
...  

Copper (Cu) and iron (Fe) are essential micronutrients for plants and animals. How phosphorus (P) application affects Cu and Fe concentrations in maize grain still remains unclear. Two-year field studies were conducted in a long-term experiment with six P levels (0, 12.5, 25, 50, 100, and 200 kg∙ha−1 P) on calcareous soil. Phosphorus application significantly decreased the average grain Cu concentration by 12.6% compared to no P treatment, but had no effect on grain Fe concentration. The copper content increased as the P application rate increased from 0 to 25 or 50 kg·ha−1, but then decreased, while Fe content kept increasing. As the P application rate increased, the specific Cu uptake by the roots decreased, but not for Fe. The root length density in response to P application had a positive relationship with shoot Cu and Fe content. The shoot Cu content and grain Cu concentration decreased with the reduction in the arbuscular mycorrhizal fungi (AMF) colonization of roots due to increasing P application. The reduction in grain Cu concentration with increasing P rates could be partly explained by the decreasing uptake efficiency.


Sign in / Sign up

Export Citation Format

Share Document