scholarly journals Response of Twenty Tall Fescue (Schedonorus arundinaceus (Schreb.) Dumort.) Cultivars to Low Mowing Height

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 943
Author(s):  
Marco Schiavon ◽  
Stefano Macolino ◽  
Cristina Pornaro

Tall fescue (Schedonorus arundinaceus (Schreb.) Dumort.) is the most widely used species in the European transition zone, however, despite its good wear tolerance, its use is still limited to lawns and landscape areas due to concerns about its ability to withstand low mowing regimes. A two years field study was conducted to access performance of twenty tall fescue cultivars (‘Ares’, ‘Armani’, ‘Dynamites LS’, ‘Firecracker SLS’, ‘Firewall’, ‘Foxhound’ ‘Granditte’, ‘JT-LT2′, ‘JT-338′, ‘Karakum’, ‘Lexington’, ‘Olympic Gold’, ‘Rebounder’, ‘Rhambler SRP’, ‘Starlett’, ‘Supersonic’, ‘Talladega’, ‘Thunderstruck’, ‘Titanium 2LS’, ‘Turfway’) mowed weekly at 18 mm. Turfgrass was evaluated every two weeks for visual quality, color, density, texture and uniformity, as well as percent green cover (PGC) and dark green color index (DGCI), and normalized difference vegetation index (NDVI), and traction twice per year. Although no cultivars showed sufficient quality throughout the year, ‘Turfway’, ‘Titanium 2LS’ and ‘JT-338’ achieved high quality rating during spring and fall, the two seasons with the highest frequency of games played on sports field in northern Italy. Traction ratings collected in these study fell within acceptable range for football fields. Our results suggest that improved dwarf-type tall fescue cultivars can be used in sport fields in Northern Italy.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 193
Author(s):  
Marco Schiavon ◽  
Cristina Pornaro ◽  
Stefano Macolino

The identification of minimal N requirements for sustaining turfgrass quality and functionality became necessary to reduce N fertilization inputs and avoid potential environmental impacts in the European Union. A two year study was conducted at Padova University in Legnaro, northeastern Italy to investigate the performance of four tall fescue (Schedonorus arundinaceus (Schreb.) Dumort.) cultivars (‘Lexington’, ‘Rhambler SRP’, ‘Rhizing star’, and ‘Thunderstruck’) fertilized twice per year at either 75 or 150 kg N ha−1 year−1. Turfgrass was evaluated every two weeks for turfgrass visual quality, percent green cover (PGR) as well as dark green color index (DGCI) through digital image analysis and normalized difference vegetation index (NDVI). ‘Rhizing star’ was the only cultivar that showed poor adaptation to the environment, achieving acceptable turfgrass quality (6.0 or higher) only during June and July 2019. Turf fertilized at 150 kg N ha−1 year−1 generally showed higher performance than 75 kg N ha−1 year−1, however, the increase in turfgrass quality was mostly negligible and detected only during the winter months. Results suggest that well adapted tall fescue cultivars could be fertilized at 75 kg N ha−1 year−1 in Northern Italy.


2020 ◽  
Vol 30 (3) ◽  
pp. 391-397
Author(s):  
Brian Schwartz ◽  
Jing Zhang ◽  
Jonathon Fox ◽  
Jason Peake

Heavily shaded environments often limit the performance and persistence of hybrid bermudagrass (Cynodon dactylon × C. transvaalensis), therefore a field-based shade study was performed to determine whether different mowing heights (0.5 and 1.5 inch) or two trinexapac-ethyl (TE) growth regulator management treatments (control and 2 oz/acre) allow either ‘TifSport’ or ‘TifGrand’ hybrid bermudagrass to persist under 77% shade. Turfgrass quality (TQ), green cover, normalized difference vegetation index (NDVI), and dark-green color index (DGCI) were evaluated on the two cultivars under a shade structure in Tifton, GA, during 2010 and 2011. Neither of the cultivars maintained acceptable TQ throughout the entire year under 77% shade, although ‘TifGrand’ displayed adequate TQ at the higher mowing height (1.5 inch) and demonstrated more shade tolerance than ‘TifSport’, as indicated by TQ, green cover, and NDVI. The TE application did not enhance the turf performance of ‘TifSport’ under 77% shade when mowed at 0.5 inch, but it improved turf performance of ‘TifGrand’ at the same height. The effect of TE application was cultivar and mowing height dependent under this heavily shaded environment, which warrants future study to determine the best management practices of these cultivars as well as continued efforts to develop new, shade-tolerant bermudagrass hybrids.


2020 ◽  
Vol 38 (1) ◽  
pp. 29-36
Author(s):  
Travis Culpepper ◽  
Joseph Young ◽  
David T. Montague ◽  
Manish Sapkota ◽  
Eduardo Escamilla ◽  
...  

Abstract Urban soils may restrict turfgrass rooting depth with shallow soil layers in high sand content soils, which may influence water conservation. A greenhouse study sought to quantify water usage and determine the physiological response of turfgrasses at four irrigation levels. ‘ATF-1434′ tall fescue (Schedonorus arundinaceus (Schreb.) Dumort. nom. cons.; syn. Festuca arundinacea Schreb.), ‘Jamur' Japanese lawngrass (Zoysia japonica Steud.), and ‘Zeon' Manilagrass [Zoysia matrella (L.) Merr.] were established in 10 cm (4 in) diameter by 17.8 cm (7 in) tall containers. Each species was irrigated with 16.5, 21.9, 27.3, or 32.7 mm.wk−1 (0.65, 0.86, 1.1, or 1.3 in.wk−1). Gravimetric water loss was determined by pre- and post-irrigation pot weights. Turf quality, leaf discoloration, percent green cover, and gross photosynthesis were evaluated weekly and root parameters were measured at the conclusion of each trial. Although root mass was similar among species, water deficit stress and leaf discoloration occurred sooner in tall fescue than the two Zoysia species, reducing turf quality and green cover. Japanese lawngrass and Manilagrass had greater stomatal conductance, resulting in 109 and 89% higher gross photosynthesis relative to tall fescue. Both zoysiagrasses maintained acceptable turf quality with 27.3 mm water.wk−1. However, tall fescue quality was not acceptable at any irrigation level. Index words: Photosynthesis, gravimetric water loss, tall fescue, Japanese lawngrass, Manilagrass. Species used in this study: Tall fescue (Schedonorus arundinaceus (Schreb.) Dumort. nom. cons.; syn. Festuca arundinacea Schreb.); Japanese lawngrass (Zoysia japonica Steud.); Manilagrass [Zoysia matrella (L.) Merr.].


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1810
Author(s):  
Cristina Pornaro ◽  
Matteo Serena ◽  
Stefano Macolino ◽  
Bernd Leinauer

Perennial ryegrass is generally known as exhibiting poor drought tolerance with poor recuperative capacity. The objective of this study was to evaluate the effects of acute drought followed by a recovery period, on 11 perennial ryegrass varieties (Apple SGL, Azimuth, Barrage, Caddieshack, Double, Double Time, Ecologic, New Orleans, Pizzaz 2, Rainwater, Turfgold) and one tall fescue (Olympic Gold). The study was conducted in a rain-out structure to control water inputs. Green cover percentage, visual quality, color, normalized difference vegetation index (NDVI), and soil moisture were measured weekly. Eighty percent coverage was considered optimal and was reached only during the first two weeks of the drought period. Starting from the fourth week, a significant decrease in green cover was observed for most of the perennial ryegrass cultivars. However, 5 cultivars displayed a visual quality rate greater than 6, which is considered acceptable during this period, while color ratings were recorded greater than 6 for 7 cultivars. At the end of the drought phase, the cultivar ’New Orleans’ exhibited significantly greater green cover compared to most other perennial ryegrasses. The recovery of the grasses was slow and at the end of the experiment the variability in green cover between cultivars was greater than during the first week.


2021 ◽  
pp. 1-10
Author(s):  
Florence Breuillin-Sessoms ◽  
Dominic P. Petrella ◽  
Daniel Sandor ◽  
Samuel J. Bauer ◽  
Brian P. Horgan

Consumers often have multiple choices when purchasing retail lawn products in stores. In this study, we evaluated the acute drought performance of locally available retail lawn seed products (mixtures or blends) at two mowing heights of 2.5 and 3 inches. We hypothesized that the species present in the products and the height-of-cut differentially influence the drought resistance and recovery of the mixtures and blends. In Fall 2016 and 2017, 28 different products consisting of 25 mixtures and 3 blends of turfgrass seeds were established under a fully automated rainout shelter at the St. Paul campus of the University of Minnesota. The drought treatments lasted for 67 days in 2017, and 52 days in 2018; both the 2017 and 2018 treatments were followed by a recovery period. Data were obtained during acute drought treatments and recovery periods for visual turfgrass quality and green turfgrass cover using digital images of the plots. During the first year, several products displayed higher green stability (or the ability to remain green) at the 3-inch height-of-cut compared with the 2.5-inch height-of-cut. Products with tall fescue (Schedonorus arundinaceus) and fine fescue (Festuca sp.) as dominant species generally performed better during the drought treatments, whereas an increasing presence of perennial ryegrass (Lolium perenne) and kentucky bluegrass (Poa pratensis) decreased the visual drought performance of the products. During the recovery period, an effect of the interaction between mowing height and the date of data collection on the percentage of green cover was observed: the lower mowing height improved the early recovery of green cover after acute drought. These findings suggest that consumers in the upper midwestern United States and areas with a climate similar climate to that of St. Paul, MN, who are challenged with multiple choices of lawn seed products should choose products containing a higher tall fescue content and adjust their mowing heights to optimize recovery.


2021 ◽  
Vol 13 (3) ◽  
pp. 521
Author(s):  
K. Colton Flynn ◽  
Trey Lee ◽  
Dinku Endale ◽  
Alan Franzluebbers ◽  
Shengfang Ma ◽  
...  

Tall fescue (Schedonorus arundinaceus) is a common perennial forage in cattle pastures of the southeastern United States. A mutualistic fungal endophyte normally infects the grass and produces ergot alkaloids toxic to livestock, but fungal biotypes that have no ergot alkaloid production have been developed. Here remote sensing methods were used to assess plant health in 1 ha grazed paddocks with application amongst different combinations of fertilizer sources (inorganic and broiler litter) and endophyte associations (wild, novel–tall fescue MaxQ type with novel endophyte, and free). Broiler litter fertilization is common in the region due to the presence of many chicken farms. Moreover, broiler litter costs are comparable to inorganic fertilizer depending on distance from source to application. Incorporating remote sensing, we tested the sensitivity of three indices: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and land surface water index (LSWI) to assess fescue plant health. Indices were obtained from satellite imagery provided by Landsat 7 ETM+ between the years 2005 and 2009. Sensitivity analytics suggested that LSWI was the optimum index to determine fescue plant health. The year experiencing drought (determined by annual precipitation) showed significant difference between fertilizer types (p = 0.05) and a nearly significant difference between endophyte associations (p = 0.08). There was no significant difference in years with normal or wet precipitation rates due to tall fescue endophyte association or type of fertilization. Limited availability of satellite imagery during parts of the five years of study might have influenced outcomes of statistical analyses. Nevertheless, the data and findings point to the potential use of satellite imagery in assessing grazingland tall fescue health and advancing the concept of poultry manureshed in the region or elsewhere where poultry manure production is extensive.


2018 ◽  
Vol 10 (9) ◽  
pp. 1456 ◽  
Author(s):  
Christopher Potter

The analysis of wildfire impacts at the scale of less than a square kilometer can reveal important patterns of vegetation recovery and regrowth in freshwater Arctic and boreal regions. For this study, NASA Landsat burned area products since the year 2000, and a near 20-year record of vegetation green cover from the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite sensor were combined to reconstruct the recovery rates and seasonal profiles of burned wetland ecosystems in Alaska. Region-wide breakpoint analysis results showed that significant structural change could be detected in the 250-m normalized difference vegetation index (NDVI) time series for the vast majority of wetland locations in the major Yukon river drainages of interior Alaska that had burned at high severity since the year 2001. Additional comparisons showed that wetland cover locations across Alaska that have burned at high severity subsequently recovered their green cover seasonal profiles to relatively stable pre-fire levels in less than 10 years. Negative changes in the MODIS NDVI, namely lower greenness in 2017 than pre-fire and incomplete greenness recovery, were more commonly detected in burned wetland areas after 2013. In the years prior to 2013, the NDVI change tended to be positive (higher greenness in 2017 than pre-fire) at burned wetland elevations lower than 400 m, whereas burned wetland locations at higher elevation showed relatively few positive greenness recovery changes by 2017.


2018 ◽  
Vol 28 (3) ◽  
pp. 276-283 ◽  
Author(s):  
Mingying Xiang ◽  
Justin Q. Moss ◽  
Dennis L. Martin ◽  
Yanqi Wu

Turfgrass managers are using reclaimed water as an irrigation resource because of the decreasing availability and increasing cost of fresh water. Much attention, thereby, has been drawn to select salinity-tolerant turfgrass cultivars. An experiment was conducted to evaluate the relative salinity tolerance of 10 common bermudagrasses (Cynodon dactylon) under a controlled environment in a randomized complete block design with six replications. ‘SeaStar’ seashore paspalum (Paspalum vaginatum) was included in this study as a salinity-tolerant standard. All entries were tested under four salinity levels (1.5, 15, 30, and 45 dS·m−1) consecutively using subirrigation systems. The relative salinity tolerance among entries was determined by various parameters, including the normalized difference vegetation index (NDVI), percentage green cover determined by digital image analysis (DIA), leaf firing (LF), turf quality (TQ), shoot vertical growth (VG), and dark green color index (DGCI). Results indicated that salinity tolerance varied among entries. Except LF, all parameters decreased as the salinity levels of the irrigation water increased. ‘Princess 77’ and ‘Yukon’ provided the highest level of performance among the common bermudagrass entries at the 30 dS·m−1 salinity level. At 45 dS·m−1, the percent green cover as measured using DIA varied from 4.97% to 16.11% among common bermudagrasses, where ‘SeaStar’ with a DIA of 22.92% was higher than all the common bermudagrass entries. The parameters LF, TQ, NDVI, DGCI, VG, and DIA were all correlated with one another. Leaf firing had the highest correlation with other parameters, which defined its value as a relative salinity tolerance measurement for common bermudagrass development and selection.


2021 ◽  
Vol 2 (4) ◽  
pp. 5-10
Author(s):  
Josephine A. Maghah ◽  
Cornelius M. Lambi ◽  
Titus F. Ambebe

Mountains are amongst the landforms that have undergone the most transformation. Landscape changes in mountains are driven by anthropogenic stressors and climatic change. The UN Sustainable development Goal 15 recognized the importance of conservation of mountain ecosystems for an enhancement of sustainable development. This study seeks to evaluate spatio-temporal ecological changes in the Northeastern Bamenda Highlands, based on a remote sensing-derived mountain green cover index proxy, the Normalized Difference Vegetation Index (NDVI). The study showed vegetation greening and browning trends exemplified by degraded montane forest linked to anthropogenic stressors and natural climatic shift. These anthropogenic stressors include deforestation, conversion of forest to farmlands and eucalyptus plantations, and the unsustainable grazing with inter-annual use of fires for pasture regeneration. As a means to ensure future ecological services provision of these highlands, landscape restoration strategies are needed. The greening of the highlands with water retaining trees species, sustainable grazing and farming restrictions in protected areas and its buffers.


Sign in / Sign up

Export Citation Format

Share Document