scholarly journals Earthworm Abundance Changes Depending on Soil Management Practices in Slovenian Vineyards

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1241
Author(s):  
Stanko Vršič ◽  
Marko Breznik ◽  
Borut Pulko ◽  
Jesús Rodrigo-Comino

Earthworms are key indicators of soil quality and health in vineyards, but research that considers different soil management systems, especially in Slovenian viticultural areas is scarce. In this investigation, the impact of different soil management practices such as permanent green cover, the use of herbicides in row and inter-row areas, use of straw mulch, and shallow soil tillage compared to meadow control for earthworm abundance, were assessed. The biomass and abundance of earthworms (m2) and distribution in various soil layers were quantified for three years. Monitoring and a survey covering 22 May 2014 to 5 October 2016 in seven different sampling dates, along with a soil profile at the depth from 0 to 60 cm, were carried out. Our results showed that the lowest mean abundance and biomass of earthworms in all sampling periods were registered along the herbicide strip (within the rows). The highest abundance was found in the straw mulch and permanent green cover treatments (higher than in the control). On the plots where the herbicide was applied to the complete inter-row area, the abundance of the earthworm community decreased from the beginning to the end of the monitoring period. In contrast, shallow tillage showed a similar trend of declining earthworm abundance, which could indicate a deterioration of soil biodiversity conditions. We concluded that different soil management practices greatly affect the soil’s environmental conditions (temperature and humidity), especially in the upper soil layer (up to 15 cm deep), which affects the abundance of the earthworm community. Our results demonstrated that these practices need to be adapted to the climate and weather conditions, and also to human impacts.

2020 ◽  
pp. 28-33
Author(s):  
Valery Genadievich Popov ◽  
Andrey Vladimirovich Panfilov ◽  
Yuriy Vyacheslavovich Bondarenko ◽  
Konstantin Mikhailovich Doronin ◽  
Evgeny Nikolaevih Martynov ◽  
...  

The article analyzes the experience of the impact of the system of forest belts and mineral fertilizers on the yield of spring wheat, including on irrigated lands. Vegetation irrigation is designed to maintain the humidity of the active soil layer from germination to maturation at the lower level of the optimum-70-75%, and in the phases of tubulation-earing - flowering - 75-80% NV. However, due to the large differences in zones and microzones of soil and climate conditions and due to the weather conditions of individual years, wheat irrigation regimes require a clear differentiation. In the Volga region in the dry autumn rainfalls give the norm of 800-1000 m3/ha, and in saline soils – 1000-1300 and 3-4 vegetation irrigation at tillering, phases of booting, earing and grain formation the norm 600-650 m3/ha. the impact of the system of forest belts, mineral fertilizers on the yield of spring wheat is closely tied to the formation of microclimate at different distances from forest edges.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 195 ◽  
Author(s):  
Mirko Castellini ◽  
Anna Maria Stellacci ◽  
Danilo Sisto ◽  
Massimo Iovino

The multi-height (low, L = 3 cm; intermediate, M = 100 cm; high, H = 200 cm) Beerkan run methodology was applied on both a minimum tilled (MT) (i.e., up to a depth of 30 cm) and a no-tilled (NT) bare loam soil, and the soil water retention curve was estimated by the BEST-steady algorithm. Three indicators of soil physical quality (SPQ), i.e., macroporosity (Pmac), air capacity (AC) and relative field capacity (RFC) were calculated to assess the impact of water pouring height under alternative soil management practices. Results showed that, compared to the reference low run, M and H runs affected both the estimated soil water retention curves and derived SPQ indicators. Generally, M–H runs significantly reduced the mean values of Pmac and AC and increased RFC for both MT and NT soil management practices. According to the guidelines for assessment of SPQ, the M and H runs: (i) worsened Pmac classification of both MT and NT soils; (ii) did not worsen AC classification, regardless of soil management parameters; (iii) worsened RFC classification of only NT soil, as a consequence of insufficient soil aeration. For both soil management techniques, a strong negative correlation was found between the Pmac and AC values and the gravitational potential energy, Ep, of the water used for the infiltration runs. A positive correlation was detected between RFC and Ep. The relationships were plausible from a soil physics point of view. NT soil has proven to be more resilient than MT. This study contributes toward testing simple and robust methods capable of quantifying soil degradation effects, due to intense rainfall events, under different soil management practices in the Mediterranean environment.


2019 ◽  
Vol 12 ◽  
pp. 117862211983940 ◽  
Author(s):  
Jesús Rodrigo-Comino ◽  
José María Senciales ◽  
José Antonio Sillero-Medina ◽  
Yeboah Gyasi-Agyei ◽  
José Damián Ruiz-Sinoga ◽  
...  

New trends related to market incomes, cultural human development, non-sustainable soil management practices, and climate change are affecting land abandonment in Mediterranean sloping vineyards. It is generally accepted that hydrological processes and, subsequently, soil erosion rates are usually different between cultivated and abandoned soils. However, these alterations are still poorly studied in relation to the general weather conditions in vineyards and abandoned vineyards. Thus, the main goals of this research are to (1) estimate the differences in soil properties, (2) quantify water and soil losses due to rainfall and specific soil management practices, and (3) analyze which kind of weather type and rainfall event is able to generate specific surface flows and soil loss rates. To achieve these goals, we focused on the specific case of the sloping vineyards of the Montes de Málaga (South Spain). We used 4 paired-erosion plots with Gerlach troughs to quantify soil loss and surface flow and conducted an analysis of the weather conditions during each rainfall event. The weather types that generated the highest amount of rainfall in the studied area came from the western (32.6%) and southeast (28.2%) types. The low rainfall events came from the south type (5.9%) and at the 500 hPa level, whereas the rainiest ones came from the southwest (47.7%) and south (34.1%). It is confirmed that there is a bimodality in the rainfall patterns. The results of soil erosion showed that there is a mixed mechanism depending on the state of the soil (vegetation cover, compaction, and initial soil moisture), soil management (tillage, trampling effect, and the use of herbicides). It is observed that the intensity of surface flow is highly correlated to the total rainfall amount and intensity. In the poorly managed abandoned plot, it is important to remark that the effect of tillage in the past, the elimination of the vegetation cover to preserve the soil in bare condition, and its use as a grazing area by cultivating barley highly affects the generation of the highest erosive events. Therefore, it is confirmed that these soil management options are not the most sustainable way to conserve the soil after the abandonment of cultivation.


2011 ◽  
Vol 57 (No. 6) ◽  
pp. 258-263 ◽  
Author(s):  
S. Vršič

This study is aimed at investigating the effect of different vineyard soil management systems on soil erosion and earthworm (Lumbricidae) population. Three soil management systems were investigated: permanent green cover (control), straw-cover and periodic soil tillage. Inter-row periodic soil tillage was applied in 2002 and 2003 (May and August), and straw-cover in May 2002. Periodic soil tillage resulted in increased erosion, i.e. 1746 kg/ha of soil/per year, on average. The greater portion of erosive events occurred after tillage in summer (August 2002), which was accompanied by heavy rainfall and slow renewal of grass cover (slower than in spring). The lowest average amount of soil erosion was observed in the treatment with straw-cover (56 kg/ha per year). This management system provided better environment for earthworm populations, most of which were found close to the soil surface, especially in the dry year 2003. In periodical soil tillage, the majority of earthworms were found in the soil horizon not disturbed by the tillage, i.e. at the depth of 10&ndash;20 cm. The lowest number of earthworms (only 2 per m<sup>2</sup>) was recorded in the herbicide intra-row strip. &nbsp;


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 177 ◽  
Author(s):  
Mirko Castellini ◽  
Anna Maria Stellacci ◽  
Marcello Mastrangelo ◽  
Francesco Caputo ◽  
Luisa Maria Manici

Saving water resources in agriculture is a topic of current research in Mediterranean environments, and rational soil management can allow such purposes. The Beerkan Estimation of Soil Transfer parameters (BEST) procedure was applied in five olive orchards of Salento peninsula (southern Italy) to estimate the soil physical and hydraulic properties under alternative soil management (i.e., no-tillage (NT) and minimum tillage (MT)), and to quantify the impact of soil management on soil water conservation. Results highlighted the soundness of BEST predictions since they provided consistent results in terms of soil functions or capacitive-based soil indicators when (i) the entire data set was grouped by homogeneous classes of texture, bulk density, and capillarity of the soil, (ii) the predictions were compared with the corresponding water retention measures independently obtained in lab, and (iii) some correlations of literature were checked. BEST was applied to establish a comparison at Neviano (NE) and Sternatia (ST) sites. The two neighboring NT soils compared at NE showed substantial discrepancies in soil texture (i.e., sandy loam (NE-SL) or clay (NE-C)). This marked difference in soil texture could determine a worsening of the relative field capacity at the NE-SL site (relative field capacity, RFC < 0.6), as compared to NE-C where RFC was optimal. The current soil management determined a similar effect (RFC < 0.6) at Sternatia (ST-MT vs. ST-NT), but the worsening in soil properties, due to soil tillage, must be considered substantially transient, as progressive improvement is expected with the restoration of the soil structure. The results of this work suggest that strategic MT can be a viable solution to manage the soil of Salento olive orchards.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1949
Author(s):  
Eleonora Cataldo ◽  
Linda Salvi ◽  
Sofia Sbraci ◽  
Paolo Storchi ◽  
Giovan Battista Mattii

Soil management in vineyards is of fundamental importance not only for the productivity and quality of grapes, both in biological and conventional management, but also for greater sustainability of the production. Conservative soil management techniques play an important role, compared to conventional tillage, in order to preserve biodiversity, to save soil fertility, and to keep vegetative-productive balance. Thus, it is necessary to evaluate long-term adaptation strategies to create a balance between the vine and the surrounding environment. This work sought to assess the effects of following different management practices on Vitis vinifera L. cv. Cabernet Sauvignon during 2017 and 2018 seasons: soil tillage (T), temporary cover cropping over all inter-rows (C), and mulching with plant residues every other row (M). The main physiological parameters of vines (leaf gas exchange, stem water potential, chlorophyll fluorescence, and indirect chlorophyll content) as well as qualitative and quantitative grape parameters (technological and phenolic analyses) were measured. Significant differences in gas exchanges related to the different season and inter-row management were observed. C showed more negative values of water potential, due to the grass–vine competition, especially when water availability was lower. The competition exerted by C led to differences in fruit setting with impact on yield; therefrom, significant differences also in sugar and anthocyanic content were observed.


2015 ◽  
Vol 31 (4) ◽  
pp. 300-308 ◽  
Author(s):  
M. Fracchiolla ◽  
M. Terzi ◽  
L. Frabboni ◽  
D. Caramia ◽  
C. Lasorella ◽  
...  

AbstractThis paper reports a survey on the weed flora and seed bank in an almond orchard sited in Apulia region (Southern Italy), where the following soil management practices have been compared for over 30 yrs: no-tillage, keeping the soil totally weed-free throughout the year by using pre-emergence herbicides to prevent plant emergence or post-emergence herbicides in case of weeds already emerged; no-tillage, with post-emergence herbicides; no-tillage, with mowing of natural weed flora in spring; cover cropping, with faba bean sown in November and green manured in springtime; conventional soil tillage. The different management techniques influenced significantly the weed flora in experimental plots, both in terms of quantity and quality. The seed bank was clearly impoverished after the long-term applications of pre-emergence herbicides, both in terms of richness and of diversity. During the fall period, the plots of conventional tillage or pre-emergence herbicides had less natural ground-flora than the others. During springtime, prior to the sward control practices, the plots treated by foliar herbicides or mowing had the highest total weed cover. We conclude that post-emergence weed control by mowing or using chemical herbicides or the green manure of the cover crop may be proposed to reduce impact to the soil and to promote the growth of abundant and sufficiently diversified and balanced flora. If appropriately managed, this flora can provide potential ecological services, without competing with the orchard, as suggested by the literature. During the autumn, natural flora can uptake soil nitrogen thus preventing leaching in the rainy season. In springtime, after the sward has been destroyed, natural flora can supply a substantial amount of biomass to the soil. Indicator species analysis was also used to find the species characterizing each treatment and some of their combinations. Weeds belonging to thePoaceaebotanical family were significantly associated with post-emergence herbicides and mowing treatments. These species produce a substantial amount of biomass and have bunched roots; consequently, they supply beneficial effects by improving porosity and structure of the soil and reducing erosion hazard.


Soil Systems ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 76
Author(s):  
Xia Zhu-Barker ◽  
Mark Easter ◽  
Amy Swan ◽  
Mary Carlson ◽  
Lucas Thompson ◽  
...  

Greenhouse gas (GHG) emissions from arid irrigated agricultural soil in California have been predicted to represent 8% of the state’s total GHG emissions. Although specialty crops compose the majority of the state’s crops in both economic value and land area, the portion of GHG emissions contributed by them is still highly uncertain. Current and emerging soil management practices affect the mitigation of those emissions. Herein, we review the scientific literature on the impact of soil management practices in California specialty crop systems on GHG nitrous oxide emissions. As such studies from most major specialty crop systems in California are limited, we focus on two annual and two perennial crops with the most data from the state: tomato, lettuce, wine grapes and almond. Nitrous oxide emission factors were developed and compared to Intergovernmental Panel on Climate Change (IPCC) emission factors, and state-wide emissions for these four crops were calculated for specific soil management practices. Dependent on crop systems and specific management practices, the emission factors developed in this study were either higher, lower or comparable to IPCC emission factors. Uncertainties caused by low gas sampling frequency in these studies were identified and discussed. These uncertainties can be remediated by robust and standardized estimates of nitrous oxide emissions from changes in soil management practices in California specialty crop systems. Promising practices to reduce nitrous oxide emissions and meet crop production goals, pertinent gaps in knowledge on this topic and limitations of this approach are discussed.


1999 ◽  
Vol 39 (12) ◽  
pp. 265-272 ◽  
Author(s):  
S. Rekolainen ◽  
J. Grönroos ◽  
I. Bärlund ◽  
A. Nikander ◽  
Y. Laine

This paper presents the changes in cultivation practices in Finnish agriculture resulting from the Agri-Environmental Support Scheme of the Common Agricultural Policy of the European Union. Detailed data were collected by interviewing farmers in four different areas of the country. The potential impacts of changes in cultivation practices on phosphorus losses were assessed using a mathematical simulation model. The variables monitored were: fertilization, winter green cover and soil tillage methods in autumn. The use of fertilizers has decreased to meet the requirements of the support programme. Winter green cover has increased in areas to a minimum level of 30% of the cultivated area. However, the potential impacts on nutrient losses were small. There are two reasons for this: the increase in reduced tillage practices is likely to increase the loss of dissolved phosphorus in southern Finland, and the reduction of set-aside has led to slight increases in particulate phosphorus losses. However, the reduction in grassland fertilization rapidly decreased loss of dissolved phosphorus in northern Finland.


2018 ◽  
Vol 10 (11) ◽  
pp. 489
Author(s):  
C. V. V. Farhate ◽  
Z. M. Souza ◽  
W. S. Guimarães Jr ◽  
A. C. M. Sousa ◽  
M. C. C. Campos ◽  
...  

Currently, the management practices employed in Brazilian sugarcane plantations have contribute to soil physical degradation and, few studies considering the effect of cover crop associated with conservationist soil tillage systems to control or even reverse this process. Therefore, with the aim to assess the impact of cover crop and tillage systems on the least limiting water range (LLWR) and the S index in two soils of different textures used for sugarcane production, a fieldwork was carried out in two sugarcane plantations in the state of S&atilde;o Paulo, Brazil. The experimental design is a split-plot with four repetitions. The main factor consisted of soil cover vegetation: cover crop and fallow, and the second factor, the tillage system: minimum tillage and conventional tillage. The data of this study demonstrated that clayey and medium-textured soil are sensitive to the management systems used. The use of cover crop promoted an increase of LLWR (average incremental rate of 105% for clayey and 100% for medium-textured soil) and S index (average incremental rate of 16% for clayey and 10% for medium-textured soil). The maintenance of soil under fallow represented restrictive conditions for the growth/development of the plants due to the degradation of the soil structure. In addition, conservation management systems, such as minimum tillage, resulted in better soil physical quality when associated with cover crop. Finally, the clayey and medium-textured soil, show good S index during the first cycle of sugarcane cultivation.


Sign in / Sign up

Export Citation Format

Share Document