Influence of different soil management practices on ground-flora vegetation in an almond orchard

2015 ◽  
Vol 31 (4) ◽  
pp. 300-308 ◽  
Author(s):  
M. Fracchiolla ◽  
M. Terzi ◽  
L. Frabboni ◽  
D. Caramia ◽  
C. Lasorella ◽  
...  

AbstractThis paper reports a survey on the weed flora and seed bank in an almond orchard sited in Apulia region (Southern Italy), where the following soil management practices have been compared for over 30 yrs: no-tillage, keeping the soil totally weed-free throughout the year by using pre-emergence herbicides to prevent plant emergence or post-emergence herbicides in case of weeds already emerged; no-tillage, with post-emergence herbicides; no-tillage, with mowing of natural weed flora in spring; cover cropping, with faba bean sown in November and green manured in springtime; conventional soil tillage. The different management techniques influenced significantly the weed flora in experimental plots, both in terms of quantity and quality. The seed bank was clearly impoverished after the long-term applications of pre-emergence herbicides, both in terms of richness and of diversity. During the fall period, the plots of conventional tillage or pre-emergence herbicides had less natural ground-flora than the others. During springtime, prior to the sward control practices, the plots treated by foliar herbicides or mowing had the highest total weed cover. We conclude that post-emergence weed control by mowing or using chemical herbicides or the green manure of the cover crop may be proposed to reduce impact to the soil and to promote the growth of abundant and sufficiently diversified and balanced flora. If appropriately managed, this flora can provide potential ecological services, without competing with the orchard, as suggested by the literature. During the autumn, natural flora can uptake soil nitrogen thus preventing leaching in the rainy season. In springtime, after the sward has been destroyed, natural flora can supply a substantial amount of biomass to the soil. Indicator species analysis was also used to find the species characterizing each treatment and some of their combinations. Weeds belonging to thePoaceaebotanical family were significantly associated with post-emergence herbicides and mowing treatments. These species produce a substantial amount of biomass and have bunched roots; consequently, they supply beneficial effects by improving porosity and structure of the soil and reducing erosion hazard.

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1949
Author(s):  
Eleonora Cataldo ◽  
Linda Salvi ◽  
Sofia Sbraci ◽  
Paolo Storchi ◽  
Giovan Battista Mattii

Soil management in vineyards is of fundamental importance not only for the productivity and quality of grapes, both in biological and conventional management, but also for greater sustainability of the production. Conservative soil management techniques play an important role, compared to conventional tillage, in order to preserve biodiversity, to save soil fertility, and to keep vegetative-productive balance. Thus, it is necessary to evaluate long-term adaptation strategies to create a balance between the vine and the surrounding environment. This work sought to assess the effects of following different management practices on Vitis vinifera L. cv. Cabernet Sauvignon during 2017 and 2018 seasons: soil tillage (T), temporary cover cropping over all inter-rows (C), and mulching with plant residues every other row (M). The main physiological parameters of vines (leaf gas exchange, stem water potential, chlorophyll fluorescence, and indirect chlorophyll content) as well as qualitative and quantitative grape parameters (technological and phenolic analyses) were measured. Significant differences in gas exchanges related to the different season and inter-row management were observed. C showed more negative values of water potential, due to the grass–vine competition, especially when water availability was lower. The competition exerted by C led to differences in fruit setting with impact on yield; therefrom, significant differences also in sugar and anthocyanic content were observed.


2000 ◽  
Vol 35 (5) ◽  
pp. 887-894 ◽  
Author(s):  
LENITA JACOB OLIVEIRA ◽  
CLARA BEATRIZ HOFFMANN-CAMPO ◽  
MARIA ALICE GARCIA

To evaluate the effect of soil management systems on population of white grubs, (Phyllophaga cuyabana Moser), and on its damage in soybean, experiments were set up under no-tillage and conventional tillage (one disk plow, and a leveling disk harrow) areas. Primary tillage equipment, used in other soil management systems, such as moldboard plow, disk plow, chisel plow and heavy duty disk harrow were also tested. Fluctuation of P. cuyabana population and the extent of its damage to soybean was similar under no-tillage and conventional tillage systems. Results comparing a range of primary tillage equipment showed that it affected soil insect populations differently, depending on the time during the season in which tillage was executed. Larval mortality could mostly be attributed to their exposure to adverse factors, soon after tillage, than to changes in soil conditions. Reduction of white grub population was more evident in plots managed by heavier equipment, such as the moldboard plow. Soil tillage could be one component within the soil pest management system in soybean, however, its use can not be generalized.


2007 ◽  
Vol 64 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Fernando Luis Engel ◽  
Ildegardis Bertol ◽  
Álvaro Luiz Mafra ◽  
Neroli Pedro Cogo

Soil management influences soil cover by crop residues and plant canopy, affecting water erosion. The objective of this research was to quantify water and soil losses by water erosion under different soil tillage systems applied on a typical aluminic Hapludox soil, in an experiment carried out from April 2003 to May 2004, in the Santa Catarina highland region, Lages, southern Brazil. Simulated rainfall was applied during five soybean cropstages, at the constant intensity of 64.0 mm h-1. Treatments were replicated twice and consisted of: i) conventional tillage on bare soil - control treatment (CTBS), ii) conventional tillage on cultivated soil (CTCS), iii) no-tillage on non tilled soil with burned crop residue (NTRB), iv) no-tillage in non tilled soil with crop residue desiccated (NTRD), and v) no-tillage on four-years interrupted soil tillage with crop residue desiccated - "traditional no tillage" (NTRT). Regardless of soybean cropstages, water losses were the highest for the CTCS than for the untilled soils, while soil losses were considerably higher in the CTCS treatment only until cropstage 3, in cultivated soil treatments. The NTRT was most effective treatment in terms of both water and soil loss reduction. Water infiltration should also be considered, when considering the soil erosion process caused by rainfall and its associated runoff, due to the management systems usually adopted in cultivated fields.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1241
Author(s):  
Stanko Vršič ◽  
Marko Breznik ◽  
Borut Pulko ◽  
Jesús Rodrigo-Comino

Earthworms are key indicators of soil quality and health in vineyards, but research that considers different soil management systems, especially in Slovenian viticultural areas is scarce. In this investigation, the impact of different soil management practices such as permanent green cover, the use of herbicides in row and inter-row areas, use of straw mulch, and shallow soil tillage compared to meadow control for earthworm abundance, were assessed. The biomass and abundance of earthworms (m2) and distribution in various soil layers were quantified for three years. Monitoring and a survey covering 22 May 2014 to 5 October 2016 in seven different sampling dates, along with a soil profile at the depth from 0 to 60 cm, were carried out. Our results showed that the lowest mean abundance and biomass of earthworms in all sampling periods were registered along the herbicide strip (within the rows). The highest abundance was found in the straw mulch and permanent green cover treatments (higher than in the control). On the plots where the herbicide was applied to the complete inter-row area, the abundance of the earthworm community decreased from the beginning to the end of the monitoring period. In contrast, shallow tillage showed a similar trend of declining earthworm abundance, which could indicate a deterioration of soil biodiversity conditions. We concluded that different soil management practices greatly affect the soil’s environmental conditions (temperature and humidity), especially in the upper soil layer (up to 15 cm deep), which affects the abundance of the earthworm community. Our results demonstrated that these practices need to be adapted to the climate and weather conditions, and also to human impacts.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


2015 ◽  
Vol 39 (1) ◽  
pp. 268-278 ◽  
Author(s):  
Elói Panachuki ◽  
Ildegardis Bertol ◽  
Teodorico Alves Sobrinho ◽  
Paulo Tarso Sanches de Oliveira ◽  
Dulce Buchala Bicca Rodrigues

Surface roughness of the soil is formed by mechanical tillage and is also influenced by the kind and amount of plant residue, among other factors. Its persistence over time mainly depends on the fundamental characteristics of rain and soil type. However, few studies have been developed to evaluate these factors in Latossolos (Oxisols). In this study, we evaluated the effect of soil tillage and of amounts of plant residue on surface roughness of an Oxisol under simulated rain. Treatments consisted of the combination of the tillage systems of no-tillage (NT), conventional tillage (CT), and minimum tillage (MT) with rates of plant residue of 0, 1, and 2 Mg ha-1 of oats (Avena strigosa Schreb) and 0, 3, and 6 Mg ha-1 of maize (Zea mays L.). Seven simulated rains were applied on each experimental plot, with intensity of 60±2 mm h-1 and duration of 1 h at weekly intervals. The values of the random roughness index ranged from 2.94 to 17.71 mm in oats, and from 5.91 to 20.37 mm in maize, showing that CT and MT are effective in increasing soil surface roughness. It was seen that soil tillage operations carried out with the chisel plow and the leveling disk harrow are more effective in increasing soil roughness than those carried out with the heavy disk harrow and leveling disk harrow. The roughness index of the soil surface decreases exponentially with the increase in the rainfall volume applied under conditions of no tillage without soil cover, conventional tillage, and minimum tillage. The oat and maize crop residue present on the soil surface is effective in maintaining the roughness of the soil surface under no-tillage.


2003 ◽  
Vol 60 (3) ◽  
pp. 581-586 ◽  
Author(s):  
Ildegardis Bertol ◽  
Eloy Lemos Mello ◽  
Jean Cláudio Guadagnin ◽  
Almir Luis Vedana Zaparolli ◽  
Marcos Roberto Carrafa

Water erosion causes soil degradation, which is closely related to nutrient losses either in, the soluble form or adsorbed to soil particles, depending mainly on the adopted soil management system. This study was carried out in São José do Cerrito, SC, Brazil, between March 2000 and June 2001. The objective was to quantify available nitrogen, phosphorus, potassium, calcium and magnesium losses in water erosion obtained with simulated rainfall in the following soil management systems: conventional tillage with no-crop (bare soil) (BS), conventional tillage with soybean (CT), reduced tillage with soybean (RT), no tillage with soybean on a desiccated and burned natural pasture (DBNP), and no tillage with soybean on a desiccated natural pasture (DNP). A rotating boom rainfall simulator was used to perform three rainfall tests with constant intensity of 64 mm h-1 and sufficient duration to reach constant runoff rate, on a clayey-loam, well-structured Typic Hapludox, with an average slope of 0.18 m m-1. The first test was carried out five days before soybean emergence and the second and third at 30 and 60 days, respectively. The nutrient concentration in water and total losses of nitrogen, phosphorus, potassium, calcium and magnesium were higher under CT than in the other soil management systems.


2011 ◽  
Vol 57 (1) ◽  
pp. 21-30
Author(s):  
Božena Šoltysová ◽  
Martin Danilovič

Tillage in Relation to Distribution of Nutrients and Organic Carbon in the SoilChanges of total nitrogen, available phosphorus, available potassium and soil organic carbon were observed on gleyic Fluvisols (locality Milhostov) at the following crops: grain maize (2005), spring barley (2006), winter wheat (2007), soya (2008), grain maize (2009). The experiment was realized at three soil tillage technologies: conventional tillage, reduced tillage and no-tillage. Soil samples were collected from three depths (0-0.15 m; 0.15-0.30 m; 0.30-0.45 m). The ratio of soil organic carbon to total nitrogen was also calculated.Soil tillage affects significantly the content of total nitrogen in soil. The difference between the convetional tillage and soil protective tillages was significant. The balance showed that the content of total nitrogen decreased at reduced tillage by 5.2 rel.%, at no-tillage by 5.1 rel.% and at conventional tillage by 0.7 rel.%.Similarly, the content of organic matter in the soil was significantly affected by soil tillage. The content of soil organic carbon found at the end of the research period was lower by 4.1 rel.% at reduced tillage, by 4.8 rel.% at no-tillage and by 4.9 rel.% at conventional tillage compared with initial stage. The difference between the convetional tillage and soil protective tillages was significant.Less significant relationship was found between the soil tillage and the content of available phosphorus. The balance showed that the content of available phosphorus was increased at reduced tillage (by 4.1 rel.%) and was decreased at no-tillage (by 9.5 rel.%) and at conventional tillage (by 3.3 rel.%).Tillage did not significantly affect the content of available potassium in the soil.


2018 ◽  
Vol 32 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Anna M. Gajda ◽  
Ewa A. Czyż ◽  
Anthony R. Dexter ◽  
Karolina M. Furtak ◽  
Jarosław Grządziel ◽  
...  

AbstractThe effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction – denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.


2019 ◽  
Vol 11 (17) ◽  
pp. 4522 ◽  
Author(s):  
Magdalena Ruiz ◽  
Encarna Zambrana ◽  
Rosario Fite ◽  
Aida Sole ◽  
Jose Luis Tenorio ◽  
...  

The increasing spread of conservation agriculture demands that the next generation of wheat varieties includes cultivars capable of maintaining satisfactory yields with lower inputs and under uncertain climate scenarios. On the basis of the genetic gains achieved during decades of selection oriented to yield improvements under conventional crop management, it is important that novel breeding targets are defined and addressed. Grain yield, yield-related traits, and phenological and morphological characteristics, as well as functional quality parameters have been analyzed for six varieties each of bread and durum wheat, under minimum tillage and no-tillage. During the three-year experiment, the climatic conditions at the field trial site were characterized by low rainfall, although different degrees of aridity—from moderate to severe—were experienced. Differences were found between these two soil management practices in regard to the varieties’ yield stability. A positive influence of no-tillage on traits related to grain and biomass yield was also evidenced, and some traits among the examined seemed involved in varietal adaptation to a particular non-conventional tillage system. The study also confirmed some breeding targets for improved performance of wheat genotypes in conservation agroecosystems. These traits were represented in the small set of traditional varieties analysed.


Sign in / Sign up

Export Citation Format

Share Document