scholarly journals In Silico Characterization and Expression Profiles of Heat Shock Transcription Factors (HSFs) in Maize (Zea mays L.)

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2335
Author(s):  
Saqlain Haider ◽  
Shazia Rehman ◽  
Yumna Ahmad ◽  
Ali Raza ◽  
Javaria Tabassum ◽  
...  

Heat shock transcription factors (HSFs) regulate many environmental stress responses and biological processes in plants. Maize (Zea mays L.) is a major cash crop that is grown worldwide. However, the growth and yield of maize are affected by several adverse environmental stresses. Therefore, investigating the factors that regulate maize growth and development and resistance to abiotic stress is an essential task for developing stress-resilient maize varieties. Thus, a comprehensive genome-wide identification analysis was performed to identify HSFs genes in the maize genome. The current study identified 25 ZmHSFs, randomly distributed throughout the maize genome. Phylogenetic analysis revealed that ZmHSFs are divided into three classes and 13 sub-classes. Gene structure and protein motif analysis supported the results obtained through the phylogenetic analysis. Segmental duplication is shown to be responsible for the expansion of ZmHSFs. Most of the ZmHSFs are localized inside the nucleus, and the ZmHSFs which belong to the same group show similar physio-chemical properties. Previously reported and publicly available RNA-seq analysis revealed a major role of class A HSFs including ZmHSFA-1a and ZmHSFA-2a in all the maize growth stages, i.e., seed, vegetative, and reproductive development. Under abiotic stress conditions (heat, drought, cold, UV, and salinity), members of class A and B ZmHSFs are induced. Gene ontology and protein–protein interaction analysis indicated a major role of ZmHSFs in resistance to environmental stress and regulation of primary metabolism. To summarize, this study provides novel insights for functional studies on the ZmHSFs in maize breeding programs.

Author(s):  
Saqlain Haider ◽  
Shazia Rehman ◽  
Yumna Ahmad ◽  
Ali Raza ◽  
Javaria Tabassum ◽  
...  

Heat shock transcription factors (HSFs) participate in regulating many environmental stress responses and biological processes in plants. Maize (Zea mays L.) is a major cash crop that is grown worldwide. However, the growth and yield of maize are affected by several adverse environmental inputs. Therefore, investigating the factors that regulate maize growth and development and resistance to abiotic stress is an essential task for developing stress-resilient maize varieties. Thus, a comprehensive genome-wide identification analysis was performed to identify HSFs in the maize genome. The current study identified 25 ZmHSFs, randomly distributed throughout the maize genome. Phylogenetic analysis revealed that ZmHSFs are divided into three classes and 13 sub-classes. Gene structure and protein motif analysis supported the results obtained through the phylogenetic analysis. Domain analysis showed the DNA-binding domain to be the most conserved region of ZmHSFs. Segmental duplication is shown to be responsible for the expansion of ZmHSFs. Most of the ZmHSFs are localized inside the nucleus, and the ZmHSFs which belong to the same group show similar physio-chemical properties. The 3D structures revealed comparable conserved ZmHSFs protein structures. RNA-seq analysis revealed a major role of class A HSFs including, ZmHSFA-1a and ZmHSFA-2a in all the maize growth stages, i.e., seed, vegetative, and reproductive development. Furthermore, ZmHSFs displayed an obvious spatiotemporal expression. Under abiotic stress conditions (heat, drought, cold, UV, and salinity), members of class A and B ZmHSFs are induced. Gene ontology (GO) annotation analysis indicated a major role of ZmHSFs in resistance to environmental stress and regulation of primary metabolism. Further, the protein-protein interaction analysis showed that ZmHSFs interact with several molecular chaperons and major stress-responsive proteins. To summarize, this study provides novel insights for functional studies on the ZmHSFs in maize breeding programs.


2018 ◽  
Vol 38 (1) ◽  
pp. 199-215 ◽  
Author(s):  
Laming Pei ◽  
Ronghui Che ◽  
Linlin He ◽  
Xingxing Gao ◽  
Weijun Li ◽  
...  
Keyword(s):  
Zea Mays ◽  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Mingjia Tang ◽  
Liang Xu ◽  
Yan Wang ◽  
Wanwan Cheng ◽  
Xiaobo Luo ◽  
...  

Abstract Background Abiotic stresses due to climate change pose a great threat to crop production. Heat shock transcription factors (HSFs) are vital regulators that play key roles in protecting plants against various abiotic stresses. Therefore, the identification and characterization of HSFs is imperative to dissect the mechanism responsible for plant stress responses. Although the HSF gene family has been extensively studied in several plant species, its characterization, evolutionary history and expression patterns in the radish (Raphanus sativus L.) remain limited. Results In this study, 33 RsHSF genes were obtained from the radish genome, which were classified into three main groups based on HSF protein domain structure. Chromosomal localization analysis revealed that 28 of 33 RsHSF genes were located on nine chromosomes, and 10 duplicated RsHSF genes were grouped into eight gene pairs by whole genome duplication (WGD). Moreover, there were 23 or 9 pairs of orthologous HSFs were identified between radish and Arabidopsis or rice, respectively. Comparative analysis revealed a close relationship among radish, Chinese cabbage and Arabidopsis. RNA-seq data showed that eight RsHSF genes including RsHSF-03, were highly expressed in the leaf, root, cortex, cambium and xylem, indicating that these genes might be involved in plant growth and development. Further, quantitative real-time polymerase chain reaction (RT-qPCR) indicated that the expression patterns of 12 RsHSF genes varied upon exposure to different abiotic stresses including heat, salt, and heavy metals. These results indicated that the RsHSFs may be involved in abiotic stress response. Conclusions These results could provide fundamental insights into the characteristics and evolution of the HSF family and facilitate further dissection of the molecular mechanism responsible for radish abiotic stress responses.


Sign in / Sign up

Export Citation Format

Share Document