scholarly journals Research on the Applications of Calcium Propionate in Dairy Cows: A Review

Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1336
Author(s):  
Fan Zhang ◽  
Xuemei Nan ◽  
Hui Wang ◽  
Yuming Guo ◽  
Benhai Xiong

Calcium propionate is a safe and reliable food and feed additive. It can be metabolized and absorbed by humans and animals as a precursor for glucose synthesis. In addition, calcium propionate provides essential calcium to mammals. In the perinatal period of dairy cows, many cows cannot adjust to the tremendous metabolic, endocrine, and physiological changes, resulting in ketosis and fatty liver due to a negative energy balance (NEB) or milk fever induced by hypocalcemia. On hot weather days, cow feed (TMR or silage) is susceptible to mildew, which produces mycotoxins. These two issues are closely related to dairy health and performance. Perinatal period metabolic disease significantly reduces cow production and increases the elimination rate because it causes major glucose and calcium deficiencies. Feeding a diet contaminated with mycotoxin leads to rumen metabolic disorders, a reduced reproductive rate (increased abortion rate), an increased number of milk somatic cells, and decreased milk production, as well as an increased occurrence of mastitis and hoof disease. Propionic acid is the primary gluconeogenic precursor in dairy cows and one of the safest mold inhibitors. Therefore, calcium propionate, which can be hydrolyzed into propionic acid and Ca2+ in the rumen, may be a good feed additive for alleviating NEB and milk fever in the perinatal period of dairy cows. It can also be used to inhibit TMR or silage deterioration in hot weather and regulate rumen development in calves. This paper reviews the application of calcium propionate in dairy cows.

2019 ◽  
Vol 74 (10) ◽  
pp. 6133-2019
Author(s):  
YUANYUAN CHEN ◽  
ZHIHAO DONG ◽  
RUIRUI LI ◽  
CHUANG XU

Negative energy balance (NEB) is a common pathological cause of ketosis. As the major organs of lipid metabolism, the liver and fat tissue take part in regulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast Growth Factor 21 (FGF21) is a novel metabolic regulator involved in the control of fatty acid oxidation and lipid metabolism during a prolonged negative energy balance. Our study determined a correlation between serum FGF21 and β-hydroxybutyric acid (BHBA) levels in dairy cows with ketosis. We used sixty cows with low milk yield, abnormal glucose metabolism, and ketosis. Serum FGF21 and BHBA levels were measured using commercial kits. Serum FGF21 increased with increasing BHBA levels up to 1.6 mmol/L. At BHBA levels > 1.6 mmol/L, FGF21 decreased. Serum FGF21 levels were positively associated with BHBA levels, particularly in dairy cows with subclinical ketosis (r = 0.647, P < 0.01). At BHBA levels between 1.2 mmol/L and 1.6 mmol/L, FGF21 was more closely correlated with BHBA than with other metabolic parameters. At BHBA levels > 1.6 mmol/L, the association between FGF21 and BHBA was not significant. In conclusion, our results show that FGF21 was closely related with SK in cows. FGF21 may be a promising regulator in the prevention of subclinical ketosis.


1996 ◽  
Vol 79 (3) ◽  
pp. 378-383 ◽  
Author(s):  
J.P. Goff ◽  
R.L. Horst ◽  
P.W. Jardon ◽  
C. Borelli ◽  
J. Wedam

2020 ◽  
Vol 87 (2) ◽  
Author(s):  
Yapin Wang ◽  
Xuemei Nan ◽  
Yiguang Zhao ◽  
Yue Wang ◽  
Linshu Jiang ◽  
...  

ABSTRACT Rumen-protected glucose (RPG) plays an important role in alleviating the negative energy balance of dairy cows. This study used a combination of rumen microbes 16S and metabolomics to elucidate the changes of rumen microbial composition and rumen metabolites of different doses of RPG’s rumen degradation part in early-lactation dairy cows. Twenty-four multiparous Holstein cows in early lactation were randomly allocated to control (CON), low-RPG (LRPG), medium-RPG (MRPG), or high-RPG (HRPG) groups in a randomized block design. The cows were fed a basal total mixed ration diet with 0, 200, 350, and 500 g of RPG per cow per day, respectively. Rumen fluid samples were analyzed using Illumina MiSeq sequencing and ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. MRPG supplementation increased bacterial richness and diversity, including increasing the relative abundance of cellulolytic bacteria, such as Ruminococcus, Lachnospiraceae_NK3A20_group, Ruminiclostridium, and Lachnospiraceae_UCG-008. MRPG significantly increased the concentrations of acetate, propionate, butyrate, and total volatile fatty acid in the rumen. Ruminal fluid metabolomics analysis showed that RPG supplementation could significantly regulate the synthesis of amino acids digested by protozoa in the rumen. Correlation analysis of the ruminal microbiome and metabolome revealed some potential relationships between major bacterial abundance and metabolite concentrations. Our analysis found that RPG supplementation of different doses can change the diversity of microorganisms in the rumen and affect the rumen fermentation pattern and microbial metabolism and that a daily supplement of 350 g of RPG might be the ideal dose. IMPORTANCE Dairy cows in early lactation are prone to a negative energy balance because their dry matter intake cannot meet the energy requirements of lactation. Rumen-protected glucose is used as an effective feed additive to alleviate the negative energy balance of dairy cows in early lactation. However, one thing that is overlooked is that people often think that rumen-protected glucose is not degraded in the rumen, thus ignoring its impact on the microorganisms in the rumen environment. Our investigation and previous experiments have found that rumen-protected glucose is partially degraded in the rumen. However, there are few reports on this subject. Therefore, we conducted research on this problem and found that rumen-protected glucose supplementation at 350 g/day can promote the development and metabolism of rumen flora. This provides a theoretical basis for the extensive application of rumen bypass glucose at a later stage.


2021 ◽  
Author(s):  
Fan Zhang ◽  
Yiguang Zhao ◽  
Yue Wang ◽  
Hui Wang ◽  
Yuming Guo ◽  
...  

Abstract Background: Most of the dairy cows in early lactation suffer from a period of negative energy balance (NEB) and hypocalcemia metabolic disorders. Calcium propionate is a source of energy and calcium for alleviating NEB and hypocalcemia. The objective of the study was to investigate the changes of milk compositions and blood metabolites of postpartum dairy cows fed with calcium propionate for 5 weeks.Methods:Thirty-two multiparous Holstein cows after calving were randomly allocated to control (CON), low calcium propionate (LCaP), medium calcium propionate (MCaP) and high calcium propionate (HCaP) groups with 8 cows per group balanced with parity, milk yield and body weight. The dairy cows in the four groups were oral drenching with 0, 200, 350, 500 g/d calcium propionate per cow from calving to d 35 in early lactation, respectively.Results:The results showed that the milk yield in MCaP group was significantly higher than those in the other groups. At d 35, the somatic cell count (SCC) in MCaP group tended to be lower than those in other groups. Compared with the CON group, serum non-esterified fatty acid (NEFA) in MCaP and HCaP groups tended to decrease. The serum alanine aminotransferase (ALT) concentration in MCaP group was lowest among the four groups. The concentration of aspartate aminotransferase (AST) in HCaP group was significantly higher than the other groups. Feeding calcium propionate had no significant effect on serum calcium, phosphorus and magnesium concentrations. The serum parathyroid hormone (PTH) in HCaP group tended to decrease. The calcium propionate treatments significantly decreased the serum alkaline phosphatase (ALP) level. The MCaP treatment significantly decreased serum total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activity, while increased the concentration of malondialdehyde (MDA) when compared with the other groups. The metabolomic results showed that calcium propionate significantly affected the bile acid compositions. Conclusions: It was concluded that the 350 g/d calcium propionate feeding level could significantly improve milk performance, alleviate body fat mobilization and bone calcium utilization, however decrease antioxidant capacity of dairy cows as well. The effect of calcium propionate on milk performance and serum metabolites in early lactation cows may be regulated through the serum bile acids metabolism.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mao X ◽  
◽  
Fu C ◽  
Liu K ◽  
Li H ◽  
...  

Glycerol could be used to alleviate negative energy balance in highproducing dairy cows as an important precursor participating of glucose synthesis. However, some industrial glycerol may do harm to cow health because of some mixed toxic chemicals. The purpose of this study was to investigate the effects of glycerol-producing yeast prepared in our laboratory on improving the production performance and reducing the subclinical ketosis incidence of transition dairy cows. The results showed that the concentrations of the β-Hydroxybutyric Acid (BHBA) and Non-Esterified Fatty Acid (NEFA) in the groups with glycerol-producing yeast were significantly decreased (P<0.05), while the concentrations of glucose, TP and the production of propionic acid were significantly increased (P<0.05) compared with the control groups on the 21st day. Moreover, the glycerol-producing yeast improved the milk quality by significantly increasing the rate of milk protein and milk fat (P<0.05). Rumen fermentation performance was improved by supplementation of glycerol-producing yeast with significant increase in propionic acid and Microbial Crude Protein (MCP) concentrations (P<0.05). Meanwhile, supplementation of glycerol-producing yeast reduced the incidence of subclinical ketosis by improving the blood glucose and NEFA concentration and decreasing the concentration of BHBA. In conclusion, glycerol-producing yeast supplementation benefits dairy cows on their production performance, some biochemical indexes, subclinical ketosis incidence and rumen fermentation performance. This study provided some supportive data for the application of glycerol-production yeast supplementation in dairy production.


1967 ◽  
Vol 34 (3) ◽  
pp. 199-206 ◽  
Author(s):  
C. C. Balch ◽  
W. H. Broster ◽  
V. W. Johnson ◽  
C. Line ◽  
J. A. F. Rook ◽  
...  

SummaryThe effects, on the yield and composition of the milk of the cow, of additions to the diet of the calcium salts of acetic, propionic, butyric or lactic acids were determined in 3 change-over experiments. In all cases yield of milk was increased slightly and milk fat content was reduced; solids-not-fat (SNF) percentage was depressed by acetate and butyrate. The effects of these treatments differed markedly from those observed previously when dilute solutions of the corresponding acids were infused into the rumen, but the relative effects of the calcium salts were similar to those of the free acids. It was concluded that the specific effects of the acids were overshadowed by a more marked general effect arising from their addition to the diet as calcium salts. This was confirmed in a subsequent experiment with fistulated cows, in which the effect of an infusion of propionic acid into the rumen was compared with that of an infusion of calcium propionate and of calcium propionate given with the diet. The effect of the addition to the diet of calcium in the form of carbonate differed from that of calcium salts of the fatty acids. It was concluded that the salts were not likely to find practical use.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
M Walkenhorst ◽  
S Ivemeyer ◽  
J Spranger ◽  
G Arndt ◽  
R Schaette

Proceedings ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 9
Author(s):  
Deise Aline Knob ◽  
André Thaler Neto ◽  
Helen Schweizer ◽  
Anna Weigand ◽  
Roberto Kappes ◽  
...  

Depending on the breed or crossbreed line, cows have to cope with a more or less severe negative energy balance during the period of high milk yields in early lactation, which can be detected by beta-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFAs) in blood. Preventing cows from undergoing a severe negative energy balance by breeding and/or feeding measures is likely to be supported by the public and may help to improve the sustainability of milk production. The aim was to compare BHBA and NEFA concentrations in the blood of Holstein and Simmental cows and their crosses during the prepartum period until the end of lactation. In total, 164 cows formed five genetic groups according to their theoretic proportion of Holstein and Simmental genes as follows: Holstein (100% Holstein; n = 9), R1-Hol (51–99% Holstein; n = 30), F1 crossbreds (50% Holstein, 50% Simmental; n = 17), R1-Sim (1–49% Holstein; n = 81) and Simmental (100% Simmental; n = 27). NEFA and BHBA were evaluated once a week between April 2018 and August 2019. A mixed model analysis with fixed effects breed, week (relative to calving), the interaction of breed and week, parity, calving year, calving season, milking season, and the repeated measure effect on cows was used. Holstein cows had higher NEFAs (0.196 ± 0.013 mmol/L), and Simmental cows had the lowest NEFA concentrations (0.147 ± 0.008 mmol/L, p = 0.03). R1-Sim, F1 and R1-Hol cows had intermediate values (0.166 ± 0.005, 0.165 ± 0.010, 0.162 ± 0.008 mmol/L; respectively). The highest NEFA value was found in the first week after calving (0.49 ± 0.013 mmol/L). BHBA did not differ among genetic groups (p = 0.1007). There was, however, an interaction between the genetic group and week (p = 0.03). While Simmental, R1-Sim and F1 cows had the highest BHBA value, the second week after calving (0.92 ± 0.07 and 1.05 ± 0.04, and 1.10 ± 0.10 mmol/L, respectively), R1-Hol and Holstein cows showed the BHBA peak at the fourth week after calving (1.16 ± 0.07 and 1.36 ± 0.12 mmol/L, respectively). Unexpectedly, Holstein cows had a high BHBA peak again at week 34 after calving (1.68 ± 0.21 mmol/L). The genetic composition of the cows affects NEFA and BHBA. Simmental and R1-Sim cows mobilize fewer body reserves after calving. Therefore, dairy cows with higher degrees of Simmental origin might be more sustainable in comparison with Holstein genetics in the present study.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1674
Author(s):  
Ilona Strączek ◽  
Krzysztof Młynek ◽  
Agata Danielewicz

A significant factor in improving the performance of dairy cows is their physiological ability to correct a negative energy balance (NEB). This study, using Simmental (SIM) and Holstein-Friesian (HF) cows, aimed to assess changes in NEB (non-esterified fatty acid; body condition score; and C16:0, C18:0, and C18:1) and its effect on the metabolic efficiency of the liver (β-hydroxybutyrate and urea). The effects of NEB on daily yield, production at peak lactation and its duration, and changes in selected milk components were assessed during complete lactation. Up to peak lactation, the loss of the body condition score was similar in both breeds. Subsequently, SIM cows more efficiently restored their BCS. HF cows reached peak lactation faster and with a higher milk yield, but they were less able to correct NEB. During lactation, their non-esterified fatty acid, β-hydroxybutyrate, C16:0, C18:0, C18:1, and urea levels were persistently higher, which may indicate less efficient liver function during NEB. The dynamics of NEB were linked to levels of leptin, which has anorectic effects. Its content was usually higher in HF cows and during intensive lactogenesis. An effective response to NEB may be exploited to improve the production and nutritional properties of milk. In the long term, it may extend dairy cows’ productive life and increase lifetime yield.


Sign in / Sign up

Export Citation Format

Share Document