scholarly journals Glycolysis Combined with Core Pluripotency Factors to Promote the Formation of Chicken Induced Pluripotent Stem Cells

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 425
Author(s):  
Xia Yuan ◽  
Chen Zhang ◽  
Ruifeng Zhao ◽  
Jingyi Jiang ◽  
Xiang Shi ◽  
...  

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) in vitro. Previously, a lentivirus induction strategy of introducing Oct4, Sox2, Nanog and Lin28 (OSNL) into the iPSC process has been shown as a possible way to produce chicken iPSCs from chicken embryonic fibroblasts, but the induction efficiency of this method was found to be significantly limiting. In order to help resolve this efficiency obstacle, this study seeks to clarify the associated regulation mechanisms and optimizes the reprogramming strategy of chicken iPSCs. This study showed that glycolysis and the expression of glycolysis-related genes correlate with a more efficient reprogramming process. At the same time, the transcription factors Oct4, Sox2 and Nanog were found to activate the expression of glycolysis-related genes. In addition, we introduced two small-molecule inhibitors (2i-SP) as a “glycolysis activator” together with the OSNL cocktail, and found that this significantly improved the induction efficiency of the iPSC process. As such, the study identifies direct molecular connections between core pluripotency factors and glycolysis during the chicken iPSC induction process and, with its results, provides a theoretical basis and technical support for chicken somatic reprogramming.

2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


Sign in / Sign up

Export Citation Format

Share Document