scholarly journals A Basic Model to Predict Enteric Methane Emission from Dairy Cows and Its Application to Update Operational Models for the National Inventory in Norway

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1891
Author(s):  
Puchun Niu ◽  
Angela Schwarm ◽  
Helge Bonesmo ◽  
Alemayehu Kidane ◽  
Bente Aspeholen Åby ◽  
...  

The aim of this study was to develop a basic model to predict enteric methane emission from dairy cows and to update operational calculations for the national inventory in Norway. Development of basic models utilized information that is available only from feeding experiments. Basic models were developed using a database with 63 treatment means from 19 studies and were evaluated against an external database (n = 36, from 10 studies) along with other extant models. In total, the basic model database included 99 treatment means from 29 studies with records for enteric CH4 production (MJ/day), dry matter intake (DMI) and dietary nutrient composition. When evaluated by low root mean square prediction errors and high concordance correlation coefficients, the developed basic models that included DMI, dietary concentrations of fatty acids and neutral detergent fiber performed slightly better in predicting CH4 emissions than extant models. In order to propose country-specific values for the CH4 conversion factor Ym (% of gross energy intake partitioned into CH4) and thus to be able to carry out the national inventory for Norway, the existing operational model was updated for the prediction of Ym over a wide range of feeding situations. A simulated operational database containing CH4 production (predicted by the basic model), feed intake and composition, Ym and gross energy intake (GEI), in addition to the predictor variables energy corrected milk yield and dietary concentrate share were used to develop an operational model. Input values of Ym were updated based on the results from the basic models. The predicted Ym ranged from 6.22 to 6.72%. In conclusion, the prediction accuracy of CH4 production from dairy cows was improved with the help of newly published data, which enabled an update of the operational model for calculating the national inventory of CH4 in Norway.

Author(s):  
Puchun Niu ◽  
Angela Schwarm ◽  
Helge Bonesmo ◽  
Alemayehu Kidane ◽  
Bente Aspeholen Åby ◽  
...  

The aim of this study was to develop a basic model to predict enteric methane emission from dairy cows and to update operational calculations for the national inventory in Norway. Basic models were developed using a database with 63 treatment means from 19 studies. The database included records for enteric CH4 production (MJ/day), dry matter intake (DMI), and dietary nutrient composition. The basic models were evaluated against an external database (n=36, from ten studies) along with other extant models. When evaluated by low root mean square prediction errors and high concordance correlation coefficients, the developed basic models that included DMI, dietary concentrations of fatty acids and neutral detergent fiber performed slightly better in predicting CH4 emissions than extant models. In order to propose country-specific values for the CH4 conversion factor Ym (% of gross energy intake partitioned into CH4) and thus to carry out the national inventory for Norway, the existing operational model was updated for the prediction of Ym over a wide range of feeding situations using energy corrected milk and dietary concentrate share as predictor variables. Input values of Ym were updated based on the results from the basic models. The predicted Ym ranged from 6.22 to 6.72%. In conclusion, the prediction of CH4 production from dairy cows was improved with the help of newly published data, which enabled an update of the operational model for calculating the national inventory of CH4 in Norway.


2016 ◽  
Vol 56 (3) ◽  
pp. 574 ◽  
Author(s):  
A. K. Patra ◽  
M. Lalhriatpuii ◽  
B. C. Debnath

The objective of the present study was to develop linear and non-linear statistical models for prediction of enteric methane emission (EME) in sheep. A database from 80 publications, which included a total of 449 mean observations of EME measured on more than 1500 sheep, was constructed to develop prediction and evaluation of models of EME. Dietary nutrient composition (g/kg), nutrient or energy intake (kg/day or MJ/day) and digestibility (g/kg) of organic matter were used as predictors of EME (MJ/day). The dietary concentrations of neutral detergent fibre and crude protein, and feed intake, were 435 g/kg, 152 g/kg and 0.92 kg/day, respectively. The EME by sheep expressed as MJ/day and % of gross energy intake was 1.02 and 6.54, respectively. The simple linear equation that predicted EME with high precision and accuracy was EME = 0.208(±0.040) + 0.049(±0.0039) × gross energy intake (MJ/day), adjusted R2 = 0.86 with root mean-square prediction error of 22.7%, of which 93% was from random error and regression bias of 3.20%. Additions of dietary concentration of fibre and feeding level, and organic matter digestibility to the simple linear model improved the models. Among the non-linear equations developed, monomolecular model, i.e. EME = 5.699 (±1.94) – [5.699 (±1.94) – 0.133 (±0.047)] × exp[–0.021(±0.0071) × metabolisable energy intake (MJ/day)]; adjusted R2 = 0.90 and mean-square prediction error = 20.1%, with 96.3% random error, performed better than simple linear and other non-linear models. The equations developed in the present study will be useful for national methane inventory preparation, and for a better understanding of dietary factors influencing EME in sheep.


2018 ◽  
Vol 58 (6) ◽  
pp. 1049 ◽  
Author(s):  
D. Vyas ◽  
S. M. McGinn ◽  
S. M. Duval ◽  
M. K. Kindermann ◽  
K. A. Beauchemin

The objective of the present study was to determine the dose response of the methane (CH4) inhibitor 3-nitrooxypropanol (NOP) on enteric CH4 production and dry matter intake (DMI) for beef cattle fed a high-forage or high-grain diet. Fifteen crossbred yearling steers were used in two consecutive studies (high-forage backgrounding, high-grain finishing), each designed as an incomplete block with two 28-day periods with a 7-day washout in between and treatments corresponding to six doses of NOP (0 (Control), 50, 75, 100, 150, 200 mg/kg DM). The NOP was provided in the ration daily with the dose increased gradually over the first 10 days of each period. No treatment effects were observed on overall DMI or DMI of cattle when they were in the chambers either for the high-forage (P ≥ 0.54) or high-grain (P ≥ 0.26) diet. With the high-forage diet, NOP supplementation lowered total CH4 emissions (g/day) (P = 0.05), with the response at 200 mg NOP/kg DM different from Control (P < 0.05). Similarly, CH4 emissions corrected for DMI (g/kg DMI) and as a percentage of gross energy intake were linearly reduced in the high-forage diet with supplemental NOP (P < 0.01) and responses observed at 100, 150 and 200 mg NOP/kg DM differed from Control (P < 0.05). For the high-grain diet, total CH4 emissions decreased with incremental increases in the concentration of NOP supplemented (P = 0.04) and responses observed at 150 and 200 mg/kg DM differed from Control. Similarly, linear responses were observed with CH4 emissions corrected for DMI (P = 0.04) and gross energy intake (P = 0.02), with 100–200 mg NOP/kg DM differing from Control. Overall, results from the present study demonstrated that for beef cattle fed high-forage and high-grain diets, supplementation of 100–200 mg NOP/kg DM lowered enteric CH4 emissions without inducing any negative effects on DMI.


2011 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
V. Sejian ◽  
J. Lakritz ◽  
T. Ezeji ◽  
R. Lal

1999 ◽  
Vol 132 (4) ◽  
pp. 483-490 ◽  
Author(s):  
C. P. FERRIS ◽  
F. J. GORDON ◽  
D. C. PATTERSON ◽  
M. G. PORTER ◽  
T. YAN

Sixty Holstein/Friesian dairy cows, 28 of high genetic merit and 32 of medium genetic merit, were used in a continuous design, 2 (cow genotypes)×4 (concentrate proportion in diet) factorial experiment. High and medium merit animals had Predicted Transmitting Abilities for milk fat plus protein yield, calculated using 1995 as the base year (PTA95 fat plus protein), of 43·3 kg and 1·0 kg respectively. Concentrate proportions in the diet were 0·37, 0·48, 0·59 and 0·70 of total dry matter (DM), with the remainder of the diet being grass silage. During this milk production trial, 24 of these animals, 12 from each genetic merit, representing three animals from each concentrate treatment, were subject to ration digestibility, and nitrogen and energy utilization studies. In addition, the efficiency of energy utilization during the milk production trial was calculated.There were no genotype×concentrate level interactions for any of the variables measured (P>0·05). Neither genetic merit nor concentrate proportion in the diet influenced the digestibility of either the DM or energy components of the ration (P>0·05). When expressed as a proportion of nitrogen intake, medium merit cows exhibited a higher urinary nitrogen output and a lower milk nitrogen output than the high merit cows. Methane energy output, when expressed as a proportion of gross energy intake, was higher for the medium than high merit cows (P<0·05), while urinary energy output tended to decrease with increasing proportion of concentrate in the diet (P<0·05). In the calorimetric studies, neither heat energy production, milk energy output and energy retained, when expressed as a proportion of metabolizable energy intake, nor the efficiency of lactation (kl), were affected by either cow genotype or concentrate proportion in the diet (P>0·05). However when kl was calculated using the production data from the milk production trial the high merit cows were found to have significantly higher kl values than the medium merit cows (0·64 v. 0·59, P<0·05) while k l tended to fall with increasing proportion of concentrate in the ration (P<0·05). However in view of the many assumptions which were used in these latter calculations, a cautious interpretation is required.


2013 ◽  
Vol 63 (3) ◽  
pp. 126-130 ◽  
Author(s):  
N. I. Nielsen ◽  
H. Volden ◽  
M. Åkerlind ◽  
M. Brask ◽  
A. L. F. Hellwing ◽  
...  

2018 ◽  
Vol 101 (6) ◽  
pp. 5582-5598 ◽  
Author(s):  
S. van Gastelen ◽  
H. Mollenhorst ◽  
E.C. Antunes-Fernandes ◽  
K.A. Hettinga ◽  
G.G. van Burgsteden ◽  
...  

2008 ◽  
Vol 88 (2) ◽  
pp. 331-337 ◽  
Author(s):  
M. Eugène ◽  
D. Massé ◽  
J. Chiquette ◽  
C. Benchaar

A meta-analysis was conducted to statistically determine the effects of lipid supplementation on methane (CH4) production, milk production, and milk composition of lactating dairy cows. For this purpose, a data base was built using seven scientific publications (25 diets) available in the literature and reporting the effects of lipid supplementation on CH4 production, milk production, and milk composition. Lipid supplementation decreased (P < 0.05) dry matter intake (DMI) by 6.4% compared with control diets, whereas production of milk and 4% FCM and milk composition were not changed (P > 0.05). Lipid supplementation decreased (P < 0.05) CH4 production by 9%, either expressed as MJ d-1 or as a percentage of gross energy intake (GEI), digestible energy intake (DEI), or metabolizable energy intake (MEI). This reduction was mainly a consequence of a decreased DMI. Key words: Meta-analysis, lipid supplementation, methane, dairy cows, lactating


2021 ◽  
Vol 104 (1) ◽  
pp. 357-366
Author(s):  
A. Melgar ◽  
C.F.A. Lage ◽  
K. Nedelkov ◽  
S.E. Räisänen ◽  
H. Stefenoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document