scholarly journals Anti-Aging Effect of Urolithin A on Bovine Oocytes In Vitro

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2048
Author(s):  
Élisa Fonseca ◽  
Carla Cruz Marques ◽  
Jorge Pimenta ◽  
Joana Jorge ◽  
Maria Conceição Baptista ◽  
...  

Oxidative stress and mitochondrial dysfunction have been associated with the age-related decline of oocyte quality and strategies for their prevention are currently quested. Urolithin A (UA) is a natural metabolite with pro-apoptotic and antioxidant effects, capable of preventing the accumulation of dysfunctional mitochondria in different aged cells. UA has never been tested in bovine oocytes. Our aim was to study the effect of UA on the developmental potential of cumulus-oocyte-complexes (COCs) and granulosa cells’ (GCs) expression of important genes related to reproductive competence. Nuclear maturation progression, mitochondrial membrane potential (MMP) and developmental competence of physiologically mature (22 h) and in vitro aged oocytes (30 h of IVM) obtained from prepubertal and adult females, either supplemented with UA or not were assessed. Additionally, the amount of mRNA of several genes (NFE2L2, NQO1, and mt-DN5) and the number of mt-ND5 DNA copies were quantified in cultured GCs from prepubertal and adult females, either supplemented with UA or not. Our study confirmed the harmful effect of oocyte aging on the nuclear maturation progression, MMP, developmental competence and gene expression levels. UA treatment during in vitro maturation enhanced (p < 0.05) the maturation rate and subsequent developmental capacity of aged oocytes. A positive effect (p < 0.05) of UA on physiological maturation, MMP and embryonic development was also identified. UA also interfered on the expression profile of NFE2L2 and NQO1 genes in GCs cultures. Our findings demonstrate that UA supplementation is an effective way to prevent oocyte aging and improves the subsequent bovine embryonic development.

2015 ◽  
Vol 27 (1) ◽  
pp. 204
Author(s):  
G. Singina ◽  
I. Lebedeva ◽  
T. Taradajnic ◽  
N. Zinovieva

The competence for embryonic development acquired during the oocyte maturation attenuates during the subsequent oocyte aging both in vivo and in vitro. Thus, the successful control of the female fertility requires information regarding factors responsible for the oocyte protection from early aging. The aim of the present research was to study the pattern and pathways of actions of two closely related pituitary hormones, prolactin (PRL), and growth hormone (GH), on the developmental potential of bovine oocytes during their aging in vitro. Therefore, we analysed (1) effects of PRL and GH during the prolonged culture of bovine oocytes on their subsequent development up to the blastocyst stage and (2) the role of cumulus cells (CC) and tyrosine kinases, the well-known mediators of PRL and GH signalling, in these effects. Bovine cumulus-enclosed oocytes (CEO) were cultured for 22 h in the following maturation medium: TCM 199 containing 10% fetal calf serum (FCS), 10 μg mL–1 of porcine FSH, and 10 μg mL–1 of ovine LH. After IVM, CEO or denuded oocytes (DO) were transferred to the aging medium consisting of TCM 199 supplemented with 10% FCS and cultured for 10 h in the absence (Control) or presence of 50 ng mL–1 bovine PRL or 10 ng mL–1 recombinant bovine GH and/or 10 μg mL–1 genistein (a non-selective inhibitor of tyrosine kinases). Genistein was not applied in the case of aging DO, since their developmental potential was not affected by both hormones. Following the prolonged culture, oocytes underwent IVF and IVC. Embryos were cultured in CR1aa medium until Day 5 post-insemination and then transferred to the same medium supplemented with 5% FCS and cultured up to Day 8. The embryo development was evaluated at Days 2 and 8 for cleavage and blastocyst formation. The data from 5 to 6 replicates using 135–184 oocytes per treatment were analysed by ANOVA. Aging of oocytes in the control medium had no effect on the cleavage rate, but caused the blastocyst yield to decline (P < 0.001) from 31.1 ± 2.3% (CEO fertilized immediately after maturation) to 10.5 ± 2.4% (aged CEO) and 7.9 ± 1.9% (aged DO). Cleavage rates of aging CEO and DO were unaffected by both PRL and GH. In the case of CEO, the addition of PRL (but not GH) to the aging medium raised the blastocyst yield from 8.2 ± 0.9% to 15.2 ± 2.1% (P < 0.05), whereas the removal of CC abolished this effect, reducing the yield up to 9.1 ± 2.7% (P < 0.05). At the same time, genistein did not influence the blastocyst yield in the PRL-treated group. The findings demonstrate that PRL can inhibit the attenuation of the developmental competence of bovine oocytes aging in vitro, with this effect being achieved via cumulus cells. Tyrosine kinases are unlikely to mediate the beneficial action of PRL on the CEO capacity for embryonic development. Meanwhile, closely related GH does not affect the developmental competence of aging bovine oocytes.This research was supported by RFBR (project No. 13-04-01888).


2014 ◽  
Vol 26 (1) ◽  
pp. 191
Author(s):  
Y. Jeon ◽  
J. D. Yoon ◽  
L. Cai ◽  
S. U. Hwang ◽  
E. Kim ◽  
...  

Zinc (Zn) is one of the abundant transition metals in biology and is an essential component of most cells. However, there are few reports about the effect of Zn in porcine oocytes. The objective was to investigate the effects of supplementary Zn during in vitro maturation (IVM) of porcine oocytes. We investigated nuclear maturation, intracellular glutathione (GSH) levels, reactive oxygen species (ROS) levels, and subsequent embryonic development after IVF. Before the experiment, Zn concentrations in IVM medium and body fluids were measured using inductively coupled plasma spectrophotometer (sensitivity: 1 μM) and treatment concentrations were determined. Zinc concentration was 12.6 μM in porcine plasma and 12.9 μM in porcine follicular fluid. We confirmed that Zn was not detected in IVM medium. A total of 541 cumulus–oocyte complexes (COC) were used for the evaluation of nuclear maturation. The COC were matured in TCM-199 medium supplemented with various concentrations of Zn (0, 6, 12, 18, and 24 μM). After 44 h of IVM, no significant difference was observed in all groups (metaphase II rate: 85.7, 88.7, 90.4, 90.3, and 87.2%, respectively). A total of 100 matured oocytes were examined for the effects of different Zn concentrations (0, 6, 12, 18, and 24 μM) on porcine oocyte intracellular GSH and ROS levels, which were measured through fluorescent staining and image analysis program. The groups of 12, 18, and 24 μM showed a significant (P < 0.05) increase in intracellular GSH levels (1.45, 1.67, and 1.78, respectively) compared with the control and 6 μM group (1.00 and 1.08, respectively). The intracellular ROS level of oocytes matured with 12, 18, and 24 μM (0.82, 0.68, and 0.55) were significantly (P < 0.05) decreased compared with the control and 6 μM groups (1.00 and 1.03, respectively). Finally, the developmental competence of oocytes matured with different concentrations of Zn (0, 6, 12, 18, and 24 μM) was evaluated after IVF. There were no significantly different in cleavage rates. However, cleavage patterns and blastocyst (BL) formation were different. Fragmented embryo ratio of the 12 μM group (14.9%) was significantly lower than that of the other groups (control, 6, 18, and 24 μM: 26.4, 17.8, 18.4, and 18.0%, respectively). Oocytes treated with 12 μM Zn during IVM had a significantly higher BL formation rate (28.2%) after IVF compared with the control (19.8%). In conclusion, these results indicate that Zn treatment as body fluid concentration during IVM improved the developmental potential of IVF in porcine embryos by increasing the intracellular GSH concentration and decreasing the ROS level. This work was supported, in part, by a grant from the Next-Generation Bio Green 21 Program (No. PJ00956901), Rural Development Administration, and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2012R1A1A4A01004885, NRF-2013R1A2A2A04008751), Republic of Korea.


Zygote ◽  
2010 ◽  
Vol 19 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Letícia Siqueira Sá Barretto ◽  
Viviane Sgobbi Dias Caiado Castro ◽  
Joaquim Mansano Garcia ◽  
Gisele Zoccal Mingoti

SummaryAiming to improve the developmental competence of bovine oocytes during meiotic block, this study evaluated the effects of a serum replacer (Knockout SR®) and hormones (gonadotropins and estradiol) supplementation of prematuration medium (TCM119 with 0.5 mM IBMX [IBMX group] or 25 μM roscovitine [ROSC group]) on the kinetics of oocyte nuclear maturation and embryo development. Most IBMX and ROSC oocytes prematured for 8 h culture remained in the GV stage (70.3% and 73.1%, respectively; p > 0.05) similar to Control 8 h (63.5%) and to control immature oocytes (Control 0 h, 92.5%). After prematuration for 16 h, no oocytes remained in the GV stage at similar rates to those recently aspirated (p < 0.05); GV rates in ROSC (32.4%) were higher (p < 0.05) than in the Control 16 h group (8.6%), but similar (p > 0.05) to IBMX (9.7%). After in vitro maturation (IMV) for 24 h, metaphase II (MII) rates for oocytes prematured during 8 h were similar (p > 0.05) between control and treatments (65.0–71.7%). Similarly, MII rates oocytes prematured during 16 h were similar (p > 0.05) between all groups (45.9–60.4%). Cleavage rates (67.8–78.2%), embryonic development in day-7 (25.0–35.6%) and hatching rates in day-8 (2.5–11.3%) oocytes blocked during 8 h were similar for all groups (p > 0.05). Results indicate that addition of Knockout SR® and hormones to meiotic block culture with IBMX and roscovitine negatively affected meiotic arrest, but did not impair oocyte nuclear maturation and acquisition of developmental competence.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 860
Author(s):  
Wu-Sheng Sun ◽  
Hoon Jang ◽  
Mi-Ryung Park ◽  
Keon Bong Oh ◽  
Haesun Lee ◽  
...  

Oxidative stress has been suggested to negatively affect oocyte and embryo quality and developmental competence, resulting in failure to reach full term. In this study, we investigated the effect of N-acetyl-L-cysteine (NAC), a cell-permeating antioxidant, on developmental competence and the quality of oocytes and embryos upon supplementation (0.1–10 mM) in maturation and culture medium in vitro using slaughterhouse-derived oocytes and embryos. The results show that treating oocytes with 1.0 mM NAC for 8 h during in vitro maturation attenuated the intracellular reactive oxygen species (ROS) (p < 0.05) and upregulated intracellular glutathione levels (p < 0.01) in oocytes. Interestingly, we found that NAC affects early embryonic development, not only in a dose-dependent, but also in a stage-specific, manner. Significantly (p < 0.05) decreased cleavage rates (90.25% vs. 81.46%) were observed during the early stage (days 0–2), while significantly (p < 0.05) increased developmental rates (38.20% vs. 44.46%) were observed during the later stage (from day 3) of embryonic development. In particular, NAC supplementation decreased the proportion of apoptotic blastomeres significantly (p < 0.05), resulting in enhanced hatching capability and developmental rates during the in vitro culture of embryos. Taken together, our results suggest that NAC supplementation has beneficial effects on bovine oocytes and embryos through the prevention of apoptosis and the elimination of oxygen free radicals during maturation and culture in vitro.


2017 ◽  
Vol 29 (9) ◽  
pp. 1821 ◽  
Author(s):  
Shuang Liang ◽  
Jing Guo ◽  
Jeong-Woo Choi ◽  
Nam-Hyung Kim ◽  
Xiang-Shun Cui

After reaching the metaphase II (MII) stage, unfertilised oocytes undergo a time-dependent process of quality deterioration referred to as oocyte aging. The associated morphological and cellular changes lead to decreased oocyte developmental potential. This study investigated the effect of exogenous melatonin supplementation on in vitro aged bovine oocytes and explored its underlying mechanisms. The levels of cytoplasmic reactive oxygen species and DNA damage response in bovine oocytes increased during in vitro aging. Meanwhile, maturation promoting factor activity significantly decreased and the proportion of morphologically abnormal oocytes significantly increased. Melatonin supplementation significantly decreased quality deterioration in aged bovine MII oocytes (P < 0.05). Additionally, it decreased the frequency of aberrant spindle organisation and cortical granule release during oocyte aging (P < 0.05). In the melatonin-supplemented group, mitochondrial membrane potential and ATP production were significantly increased compared with control. Furthermore, melatonin treatment significantly increased the speed of development of bovine oocytes to the blastocyst stage after in vitro fertilisation and significantly decreased the apoptotic rate in the blastocysts (P < 0.05). The expression of Bax and Casp3 in the blastocysts was significantly reduced after treatment with melatonin, whereas expression of Bcl2 significantly increased (P < 0.05). In conclusion, these findings suggest that supplementation of aged bovine oocytes with exogenous melatonin improves oocyte quality, thereby enhancing the developmental capacity of early embryos.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jolanta Opiela ◽  
Joanna Romanek ◽  
Daniel Lipiński ◽  
Zdzisław Smorąg

The objective of the present study was to evaluate the effect of hyaluronan (HA) during IVM on meiotic maturation, embryonic development, and the quality of oocytes, granulosa cells (GC), and obtained blastocysts. COCs were maturedin vitroin control medium and medium with additional 0.035% or 0.07% of exogenous HA. The meiotic maturity did not differ between the analysed groups. The best rate and the highest quality of obtained blastocysts were observed when 0.07% HA was used. A highly significant difference (P<0.001) was noted in the mean number of apoptotic nuclei per blastocyst and in the DCI between the 0.07% HA and the control blastocysts (P<0.01). Our results suggest that addition of 0.035% HA and 0.07% HA to oocyte maturation media does not affect oocyte nuclear maturation and DNA fragmentation. However, the addition of 0.07% HA during IVM decreases the level of blastocysts DNA fragmentation. Finally, our results suggest that it may be risky to increase the HA concentration during IVM above 0.07% as we found significantly higherBaxmRNA expression levels in GC cultured with 0.07% HA. The final concentration of HA being supplemented to oocyte maturation media is critical for the success of the IVP procedure.


Zygote ◽  
2018 ◽  
Vol 26 (2) ◽  
pp. 162-167 ◽  
Author(s):  
Mohamed Fathi ◽  
A. Salama ◽  
Magdy R. Badr

SummaryThe aim of the current study was to investigate the effect of caffeine supplementation during in vitro maturation (IVM) for different maturation times on the developmental potential of canine oocytes recovered from ovariohysterectomized bitches. The recovered cumulus–oocytes complexes were in vitro matured for 72 h. Here, 10 mM caffeine was added to the maturation medium for different incubation times (caffeine from 0–72 h maturation, caffeine for the first 24 h of maturation only, caffeine addition from 24 to 48 h maturation time, caffeine addition from 48 to 72 h maturation or in caffeine-free medium, control group). The matured oocytes were in vitro fertilized using frozen–thawed spermatozoa. The presumptive zygotes were in vitro cultured in synthetic oviductal fluid medium for 5 days. The results showed that both maturation and fertilization rates were significantly higher (P ˂ 0.05) using caffeine-treated medium for the first 24 h of maturation compared with the control and other two groups of caffeine treatment (from 24 to 48 h and from 48 to 72 h), whereas use of caffeine-treated medium for a 0–72 h incubation time did not affect these rates (P > 0.05). Interestingly, the matured oocytes in caffeine-supplemented medium for the first 24 h or from 0–72 h showed a significant (P ˂ 0.05) increase in the total number of cleaved embryos compared with the control group. In conclusion, supplementation of the maturation medium with 10 mM caffeine for the first 24 h of maturation or during the whole maturation time (0–72 h) improved nuclear maturation and subsequent embryo development preimplantation following in vitro fertilization.


Zygote ◽  
2020 ◽  
pp. 1-6
Author(s):  
Ji-Eun Park ◽  
Sang-Hee Lee ◽  
Yong Hwangbo ◽  
Choon-Keun Park

Summary The aim of the present study was to investigate the effects of porcine follicular fluid (pFF) from large-sized (LFF; >8 mm in diameter) and medium-sized (MFF; 3–6 mm in diameter) follicles on the maturation and developmental competence of porcine oocytes. Cumulus–oocyte complexes (COCs) were collected from follicles 3–6 mm in diameter. The collected COCs were incubated for 22 h with LFF or MFF (in vitro maturation (IVM)-I stage) and were incubated subsequently for 22 h with LFF or MFF (IVM-II stage). Cumulus expansion was confirmed after the IVM-I stage and nuclear maturation was evaluated after the IVM-II stage. Intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured and embryonic development was evaluated. Relative cumulus expansion and GSH levels were higher in the LFF group compared with in the MFF group after the IVM-I stage (P < 0.05). After the IVM-II stage, the numbers of oocytes in metaphase-II were increased in the LFF group and GSH content was higher in all of the LFF treatment groups compared with in the MFF treatment groups during both IVM stages (P < 0.05). ROS levels were reduced by LFF treatment regardless of IVM stage (P < 0.05). Blastocyst formation and the total numbers of cells in blastocysts were increased in all LFF treatment groups compared with the control group (P < 0.05). These results suggested that pFF from large follicles at the IVM stage could improve nucleic and cytoplasmic maturation status and further embryonic development through reducing ROS levels and enhancing responsiveness to gonadotropins.


2008 ◽  
Vol 56 (3) ◽  
pp. 399-410 ◽  
Author(s):  
Erika Varga ◽  
Erzsébet Gajdócsi ◽  
Brigitta Petz Makkosné ◽  
Ildikó Salamon ◽  
Ágnes Bali Papp

The breeding of Mangalica, a native pig breed in Hungary, had been started in 1833, but this pig breed almost became extinct in Hungary in the past decades. In 1991, the number of sows was only 200. Although in these days the existing Mangalica population consists of more than 6000 animals representing different colour variations, the preservation of this traditional pig breed is still very important. Vitrification is a potential tool for the preservation of gametes and embryos of these animals. The aim of this study was to investigate the effects of vitrification on the developmental competence of Mangalica (M) and Large White (LW) oocytes following fertilisation. The oocytes were vitrified by the Open Pulled Straw (OPS) method using different concentrations of ethylene glycol and dimethyl sulphoxide as cryoprotectants. After rehydration the oocytes underwent in vitro fertilisation; the resultant zygotes were then cultured in vitro for four days to assess embryonic development. In the first experiment, in vitro maturation of M and LW oocytes was compared. No significant difference was observed in the nuclear maturation rate of LW and M oocytes. In the second experiment, the sensitivity of oocytes to vitrification was examined by evaluating oocyte morphology after thawing. A higher percentage of LW oocytes showed normal morphology compared to M oocytes, indicating that Mangalica oocytes are more sensitive to cryoprotectants than Large White oocytes. After warming and in vitro fertilisation, more than 50% of the oocytes started embryonic development and by the end of the incubation period morula stage embryos had developed in both groups. The results show that the OPS vitrification technique is well suited to preserve Mangalica oocytes and from these oocytes morula embryos can be produced.


Sign in / Sign up

Export Citation Format

Share Document