scholarly journals Salmonella in Pig Farms and on Pig Meat in Suriname

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1495
Author(s):  
Patrick Butaye ◽  
Iona Halliday-Simmonds ◽  
Astrid Van Sauers

Salmonella is one of the most important food borne zoonotic pathogens. While mainly associated with poultry, it has also been associated with pigs. Compared to the high-income countries, there is much less known on the prevalence of Salmonella in low- and middle-income countries, especially in the Caribbean area. Therefore, we investigated the prevalence of Salmonella in pigs and pig meat in Suriname. A total of 53 farms and 53 meat samples were included, and Salmonella was isolated using standard protocols. Strains were subjected to whole genome sequencing. No Salmonella was found on pig meat. Five farms were found to be positive for Salmonella, and a total of eight different strains were obtained. Serotypes were S. Anatum (n = 1), S. Ohio (n = 2), a monophasic variant of S. Typhimurium (n = 3), one S. Brandenburg, and one S. Javaniana. The monophasic variant of S. Typhimurium belonged to the ST34 pandemic clone, and the three strains were very similar. A few resistance genes, located on mobile genetic elements, were found. Several plasmids were detected, though only one was carrying resistance genes. This is the first study on the prevalence of Salmonella in pigs in the Caribbean and that used whole genome sequencing for characterization. The strains were rather susceptible. Local comparison of similar serotypes showed a mainly clonal spread of certain serotypes.

2019 ◽  
Vol 57 (9) ◽  
Author(s):  
Xuebing Wang ◽  
Haijian Zhou ◽  
Dongke Chen ◽  
Pengcheng Du ◽  
Ruiting Lan ◽  
...  

ABSTRACT Corynebacterium striatum is an emerging multidrug-resistant (MDR) pathogen that occurs primarily among immunocompromised and chronically ill patients. However, little is known about the genomic diversity of C. striatum, which contributes to its long-term persistence and transmission in hospitals. In this study, a total of 192 C. striatum isolates obtained from 14 September 2017 to 29 March 2018 in a hospital in Beijing, China, were analyzed by antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing was conducted on 91 isolates. Nearly all isolates (96.3%, 183/190) were MDR. The highest resistance rate was observed for ciprofloxacin (99.0%, 190/192), followed by cefotaxime (90.6%, 174/192) and erythromycin (89.1%, 171/192). PFGE separated the 192 isolates into 79 pulsotypes, and differences in core genome single-nucleotide polymorphisms (SNPs) partitioned the 91 isolates sequenced into four clades. Isolates of the same pulsotype were identical or nearly identical at the genome level, with some exceptions. Two dominant subclones, clade 3a, and clade 4a, were responsible for the hospital-wide dissemination. Genomic analysis further revealed nine resistance genes mobilized by eight unique cassettes. PFGE and whole-genome sequencing revealed that the C. striatum isolates studied were the result mainly of predominant clones spreading in the hospital. C. striatum isolates in the hospital progressively acquired resistance to antimicrobial agents, demonstrating that isolates of C. striatum may adapt rapidly through the acquisition and accumulation of resistance genes and thus evolve into dominant and persistent clones. These insights will be useful for the prevention of C. striatum infection in hospitals.


Author(s):  
Justine Schaeffer ◽  
Steliana Huhulescu ◽  
Anna Stoeger ◽  
Franz Allerberger ◽  
Werner Ruppitsch

Background: Diphtheria is a vaccine preventable disease with a high potential for re-emergence. One of its causative agent is Corynebacterium diphtheriae, some strains producing the diphtheria toxin. From 2011 to 2019, 57 clinical C. diphtheriae strains were isolated in Austria, either from the respiratory track or from skin infections. Objectives: The aim of the study was to investigate the genetic diversity of these C. diphtheriae isolates using whole genome sequencing. Methods: Isolates were characterized by genome wide comparison using single nucleotide polymorphism or core genome multilocus sequence typing, and by searching sequence data for antimicrobial resistance genes and genes involved in diphtheria toxin production. Results: Genetic diversity between the isolates was high, with no clear distribution over time or place. C. belfantii isolates were separated from other strains, and were strongly associated with respiratory infections (OR = 57). Two clusters, limited in time and space, were identified. Almost 40% of strains carried resistance genes against tetracycline or sulfonamides, mostly from skin infections. Microbiological tests showed that 55% of isolates were resistant to penicillin, but did not carry genes conferring β-lactam resistance. Diphtheria toxin gene with no non-synonymous mutation was found in three isolates only. Conclusion: This study showed that sequencing can provide valuable information complementing routine microbiological and epidemiological investigations. It allowed us to identify unknown clusters, evaluate antimicrobial resistances more broadly and support toxigenicity results obtained by PCR. For these reasons, C. diphtheriae surveillance could strongly benefit from the routine implementation of whole genome sequencing.


2020 ◽  
Vol 86 (10) ◽  
Author(s):  
Mélanie Mercier-Darty ◽  
Guilhem Royer ◽  
Brigitte Lamy ◽  
Chadly Charron ◽  
Olivier Lemenand ◽  
...  

ABSTRACT The Stenotrophomonas maltophilia complex (Smc) comprises opportunistic environmental Gram-negative bacilli responsible for a variety of infections in both humans and animals. Beyond its large genetic diversity, its genetic organization in genogroups was recently confirmed through the whole-genome sequencing of human and environmental strains. As they are poorly represented in these analyses, we sequenced the whole genomes of 93 animal strains to determine their genetic background and characteristics. Combining these data with 81 newly sequenced human strains and the genomes available from RefSeq, we performed a genomic analysis that included 375 nonduplicated genomes with various origins (animal, 104; human, 226; environment, 30; unknown, 15). Phylogenetic analysis and clustering based on genome-wide average nucleotide identity confirmed and specified the genetic organization of Smc in at least 20 genogroups. Two new genogroups were identified, and two previously described groups were further divided into two subgroups each. Comparing the strains isolated from different host types and their genogroup affiliation, we observed a clear disequilibrium in certain groups. Surprisingly, some antimicrobial resistance genes, integrons, and/or clusters of attC sites lacking integron-integrase (CALIN) sequences targeting antimicrobial compounds extensively used in animals were mainly identified in animal strains. We also identified genes commonly found in animal strains coding for efflux systems. The result of a large whole-genome analysis performed by us supports the hypothesis of the putative contribution of animals as a reservoir of Stenotrophomonas maltophilia complex strains and/or resistance genes for strains in humans. IMPORTANCE Given its naturally large antimicrobial resistance profile, the Stenotrophomonas maltophilia complex (Smc) is a set of emerging pathogens of immunosuppressed and cystic fibrosis patients. As it is group of environmental microorganisms, this adaptation to humans is an opportunity to understand the genetic and metabolic selective mechanisms involved in this process. The previously reported genomic organization was incomplete, as data from animal strains were underrepresented. We added the missing piece of the puzzle with whole-genome sequencing of 93 strains of animal origin. Beyond describing the phylogenetic organization, we confirmed the genetic diversity of the Smc, which could not be estimated through routine phenotype- or matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF)-based laboratory tests. Animals strains seem to play a key role in the diversity of Smc and could act as a reservoir for mobile resistance genes. Some genogroups seem to be associated with particular hosts; the genetic support of this association and the role of the determinants/corresponding genes need to be explored.


2020 ◽  
Vol 11 ◽  
Author(s):  
Grazielle Lima Rodrigues ◽  
Pedro Panzenhagen ◽  
Rafaela Gomes Ferrari ◽  
Anamaria dos Santos ◽  
Vania Margaret Flosi Paschoalin ◽  
...  

2016 ◽  
Vol 60 (3) ◽  
pp. 1935-1938 ◽  
Author(s):  
Chang-Wei Lei ◽  
An-Yun Zhang ◽  
Hong-Ning Wang ◽  
Bi-Hui Liu ◽  
Li-Qin Yang ◽  
...  

SXT/R391 integrative and conjugative elements (ICEs) were detected in 8 out of 125Proteus mirabilisisolates from food-producing animals in China. Whole-genome sequencing revealed that seven ICEs were identical to ICEPmiJpn1, carrying the cephalosporinase geneblaCMY-2. Another one, designated ICEPmiChn1, carried five resistance genes. All eight ICEs could be transferred toEscherichia colivia conjugation. The results highlight the idea that animal farms are important reservoir of the SXT/R391 ICE-containingP. mirabilis.


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Daya Marasini ◽  
Mohamed K. Fakhr

Genome sequencing of Campylobacter jejuni strain T1-21 isolated from retail chicken meat revealed the presence of a chromosome of 1,565,978 bp and a megaplasmid of 82,732 bp that contains Mu-like prophage and multidrug resistance genes. This is the first reported sequence of a Campylobacter megaplasmid >55 kb.


2016 ◽  
Vol 60 (9) ◽  
pp. 5515-5520 ◽  
Author(s):  
Patrick F. McDermott ◽  
Gregory H. Tyson ◽  
Claudine Kabera ◽  
Yuansha Chen ◽  
Cong Li ◽  
...  

ABSTRACTLaboratory-basedin vitroantimicrobial susceptibility testing is the foundation for guiding anti-infective therapy and monitoring antimicrobial resistance trends. We used whole-genome sequencing (WGS) technology to identify known antimicrobial resistance determinants among strains of nontyphoidalSalmonellaand correlated these with susceptibility phenotypes to evaluate the utility of WGS for antimicrobial resistance surveillance. Six hundred fortySalmonellaof 43 different serotypes were selected from among retail meat and human clinical isolates that were tested for susceptibility to 14 antimicrobials using broth microdilution. The MIC for each drug was used to categorize isolates as susceptible or resistant based on Clinical and Laboratory Standards Institute clinical breakpoints or National Antimicrobial Resistance Monitoring System (NARMS) consensus interpretive criteria. Each isolate was subjected to whole-genome shotgun sequencing, and resistance genes were identified from assembled sequences. A total of 65 unique resistance genes, plus mutations in two structural resistance loci, were identified. There were more unique resistance genes (n =59) in the 104 human isolates than in the 536 retail meat isolates (n =36). Overall, resistance genotypes and phenotypes correlated in 99.0% of cases. Correlations approached 100% for most classes of antibiotics but were lower for aminoglycosides and beta-lactams. We report the first finding of extended-spectrum β-lactamases (ESBLs) (blaCTX-M1andblaSHV2a) in retail meat isolates ofSalmonellain the United States. Whole-genome sequencing is an effective tool for predicting antibiotic resistance in nontyphoidalSalmonella, although the use of more appropriate surveillance breakpoints and increased knowledge of new resistance alleles will further improve correlations.


2016 ◽  
Vol 54 (4) ◽  
pp. 1008-1016 ◽  
Author(s):  
Lena Strauß ◽  
Ulla Ruffing ◽  
Salim Abdulla ◽  
Abraham Alabi ◽  
Ruslan Akulenko ◽  
...  

Staphylococcus aureusis a major bacterial pathogen causing a variety of diseases ranging from wound infections to severe bacteremia or intoxications. Besides host factors, the course and severity of disease is also widely dependent on the genotype of the bacterium. Whole-genome sequencing (WGS), followed by bioinformatic sequence analysis, is currently the most extensive genotyping method available. To identify clinically relevant staphylococcal virulence and resistance genes in WGS data, we developed anin silicotyping scheme for the software SeqSphere+(Ridom GmbH, Münster, Germany). The implemented target genes (n= 182) correspond to those queried by the IdentibacS. aureusGenotyping DNA microarray (Alere Technologies, Jena, Germany). Thein silicoscheme was evaluated by comparing the typing results of microarray and of WGS for 154 humanS. aureusisolates. A total of 96.8% (n= 27,119) of all typing results were equally identified with microarray and WGS (40.6% present and 56.2% absent). Discrepancies (3.2% in total) were caused by WGS errors (1.7%), microarray hybridization failures (1.3%), wrong prediction of ambiguous microarray results (0.1%), or unknown causes (0.1%). Superior to the microarray, WGS enabled the distinction of allelic variants, which may be essential for the prediction of bacterial virulence and resistance phenotypes. Multilocus sequence typing clonal complexes and staphylococcal cassette chromosomemecelement types inferred from microarray hybridization patterns were equally determined by WGS. In conclusion, WGS may substitute array-based methods due to its universal methodology, open and expandable nature, and rapid parallel analysis capacity for different characteristics in once-generated sequences.


2020 ◽  
Vol 5 ◽  
pp. 3 ◽  
Author(s):  
Kirstyn Brunker ◽  
Gurdeep Jaswant ◽  
S.M. Thumbi ◽  
Kennedy Lushasi ◽  
Ahmed Lugelo ◽  
...  

Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries.


Sign in / Sign up

Export Citation Format

Share Document