scholarly journals Regulation of Phosphorylated State of NMDA Receptor by STEP61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1575
Author(s):  
Francisco J. Carvajal ◽  
Waldo Cerpa

Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34504 ◽  
Author(s):  
Quan-Guang Zhang ◽  
Melissa D. Laird ◽  
Dong Han ◽  
Khoi Nguyen ◽  
Erin Scott ◽  
...  

Neurotrauma ◽  
2018 ◽  
pp. 261-268
Author(s):  
Manish Bhomia ◽  
Nagaraja S. Balakathiresan ◽  
Kevin K. W. Wang ◽  
Barbara Knollmann-Ritschel

Traumatic brain injury (TBI) is currently considered one of the major causes of disability and death worldwide. The cellular and molecular changes of TBI pathology are dynamic and complex in nature. MicroRNAs (miRNA) are small endogenous RNA molecules that regulate gene expression at the posttranscriptional level. Several studies have shown a critical role of miRNAs in the development of long- and short-term TBI pathology. Circulating miRNAs are of great interest as blood-based biomarkers in TBI diagnosis. In this chapter, the authors review recent reports that aim to understand the role of miRNAs in TBI pathophysiology and their potential use as a therapeutic target. Additionally, the authors discuss the potential use of miRNAs as blood-based diagnostic markers for TBI and their possible association with other neurodegenerative diseases.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 199
Author(s):  
Ryan D. Readnower ◽  
William Brad Hubbard ◽  
Olivia J. Kalimon ◽  
James W. Geddes ◽  
Patrick G. Sullivan

Cyclophilin D (CypD) has been shown to play a critical role in mitochondrial permeability transition pore (mPTP) opening and the subsequent cell death cascade. Studies consistently demonstrate that mitochondrial dysfunction, including mitochondrial calcium overload and mPTP opening, is essential to the pathobiology of cell death after a traumatic brain injury (TBI). CypD inhibitors, such as cyclosporin A (CsA) or NIM811, administered following TBI, are neuroprotective and quell neurological deficits. However, some pharmacological inhibitors of CypD have multiple biological targets and, as such, do not directly implicate a role for CypD in arbitrating cell death after TBI. Here, we reviewed the current understanding of the role CypD plays in TBI pathobiology. Further, we directly assessed the role of CypD in mediating cell death following TBI by utilizing mice lacking the CypD encoding gene Ppif. Following controlled cortical impact (CCI), the genetic knockout of CypD protected acute mitochondrial bioenergetics at 6 h post-injury and reduced subacute cortical tissue and hippocampal cell loss at 18 d post-injury. The administration of CsA following experimental TBI in Ppif-/- mice improved cortical tissue sparing, highlighting the multiple cellular targets of CsA in the mitigation of TBI pathology. The loss of CypD appeared to desensitize the mitochondrial response to calcium burden induced by TBI; this maintenance of mitochondrial function underlies the observed neuroprotective effect of the CypD knockout. These studies highlight the importance of maintaining mitochondrial homeostasis after injury and validate CypD as a therapeutic target for TBI. Further, these results solidify the beneficial effects of CsA treatment following TBI.


Author(s):  
Sandrine Bourgeois-Tardif ◽  
Louis De Beaumont ◽  
José Carlos Rivera ◽  
Sylvain Chemtob ◽  
Alexander G Weil

BJS Open ◽  
2021 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
Stéphane Nguembu ◽  
Marco Meloni ◽  
Geneviève Endalle ◽  
Hugues Dokponou ◽  
Olaoluwa Ezekiel Dada ◽  
...  

Abstract Introduction Most cases of paroxysmal sympathetic hyperactivity (PSH) result from traumatic brain injury (TBI). Little is known about its pathophysiology and treatment, and several neuroprotective drugs are used including beta-blockers. The aim of our study is to collate existing evidence of the role of beta-blockers in the treatment of PSH. Method We will search MEDLINE, Web of Science, EMBASE, Cochrane, and Google Scholar. The search terms used will cover the following terms: “paroxysmal sympathetic hyperactivity”, “traumatic brain injury” and “beta-blockers.”: No language or geographical restrictions will be applied. Two independent co-authors will screen the titles and abstracts of each article following predefined inclusion and exclusion criteria. If there is a conflict the two reviewers will find a consensus and if they cannot a third co-author will decide. Using a pre-designed and pre-piloted data extraction form, data from each included citation will be collected (authors identification, study type, TBI severity, type of beta-blockers used, dosage of the drug, clinical signs of PSH, Glasgow Coma Scale, Glasgow Outcome Scale, mortality, morbidity and length of stay). Simple descriptive data analyses will be performed and the results will be presented both in a narrative and tabular form. Results The effectiveness of beta-blockers in post-TBI PHS will be evaluated through clinical signs of PHS(increased heart rate, respiratory rate, temperature, blood pressure, and sweating), Glasgow Coma Scale, and Glasgow Outcome Scale. mortality, morbidity and length of stay. Conclusion At the end of this scoping review we will design a systematic review with metaanalysis if there are a reasonable number of studies otherwise we will design a randomized controlled trial.


2021 ◽  
Vol 556 ◽  
pp. 149-155
Author(s):  
Lu Huang ◽  
Shulei He ◽  
Qing Cai ◽  
Fei Li ◽  
Siwei Wang ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 586 ◽  
Author(s):  
Hamilton Roschel ◽  
Bruno Gualano ◽  
Sergej M. Ostojic ◽  
Eric S. Rawson

There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer’s disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.


Sign in / Sign up

Export Citation Format

Share Document