scholarly journals The Response to Oxidative Damage Correlates with Driver Mutations and Clinical Outcome in Patients with Myelofibrosis

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 113
Author(s):  
Elena Genovese ◽  
Margherita Mirabile ◽  
Sebastiano Rontauroli ◽  
Stefano Sartini ◽  
Sebastian Fantini ◽  
...  

Myelofibrosis (MF) is the Philadelphia-negative myeloproliferative neoplasm characterized by the worst prognosis and no response to conventional therapy. Driver mutations in JAK2 and CALR impact on JAK-STAT pathway activation but also on the production of reactive oxygen species (ROS). ROS play a pivotal role in inflammation-induced oxidative damage to cellular components including DNA, therefore leading to greater genomic instability and promoting cell transformation. In order to unveil the role of driver mutations in oxidative stress, we assessed ROS levels in CD34+ hematopoietic stem/progenitor cells of MF patients. Our results demonstrated that ROS production in CD34+ cells from CALR-mutated MF patients is far greater compared with patients harboring JAK2 mutation, and this leads to increased oxidative DNA damage. Moreover, CALR-mutant cells show less superoxide dismutase (SOD) antioxidant activity than JAK2-mutated ones. Here, we show that high plasma levels of total antioxidant capacity (TAC) correlate with detrimental clinical features, such as high levels of lactate dehydrogenase (LDH) and circulating CD34+ cells. Moreover, in JAK2-mutated patients, high plasma level of TAC is also associated with a poor overall survival (OS), and multivariate analysis demonstrated that high TAC classification is an independent prognostic factor allowing the identification of patients with inferior OS in both DIPSS lowest and highest categories. Altogether, our data suggest that a different capability to respond to oxidative stress can be one of the mechanisms underlying disease progression of myelofibrosis.

Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1037
Author(s):  
Alessandro Allegra ◽  
Giovanni Pioggia ◽  
Alessandro Tonacci ◽  
Marco Casciaro ◽  
Caterina Musolino ◽  
...  

Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) have recently been revealed to be related to chronic inflammation, oxidative stress, and the accumulation of reactive oxygen species. It has been proposed that MPNs represent a human inflammation model for tumor advancement, in which long-lasting inflammation serves as the driving element from early tumor stage (over polycythemia vera) to the later myelofibrotic cancer stage. It has been theorized that the starting event for acquired stem cell alteration may occur after a chronic inflammation stimulus with consequent myelopoietic drive, producing a genetic stem cell insult. When this occurs, the clone itself constantly produces inflammatory components in the bone marrow; these elements further cause clonal expansion. In BCR–ABL1-negative MPNs, the driver mutations include JAK 2, MPL, and CALR. Transcriptomic studies of hematopoietic stem cells from subjects with driver mutations have demonstrated the upregulation of inflammation-related genes capable of provoking the development of an inflammatory state. The possibility of acting on the inflammatory state as a therapeutic approach in MPNs appears promising, in which an intervention operating on the pathways that control the synthesis of cytokines and oxidative stress could be effective in reducing the possibility of leukemic progression and onset of complications.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-18
Author(s):  
Hamza Celik ◽  
Ethan Krug ◽  
Hassan Bjeije ◽  
Nancy Issa ◽  
Wentao Han ◽  
...  

Myelofibrosis (MF) is the deadliest subtype of myeloproliferative neoplasm (MPN) with a median survival of approximately 5 years. Ruxolitinib, a front line therapy for JAK2V617F mutant MPN, can alleviate symptoms of the disease, but does not eliminate the malignant clone and has minimal impact on BM fibrosis and overall survival. Current mouse models do not recapitulate the clinical heterogeneity, clonal genetic composition, or morphological features of MF. Most notably, these models do not generate robust reticulin fibrosis in the bone marrow, the most significant MF pathology. This lack of clinically relevant MF models presents a major barrier to deciphering the complex genetic drivers of the disease and developing effective therapies against it. We evaluated the ability of CD34+ hematopoietic stem and progenitor cells (HSPCs) from MF patients (that contain the MPN-disease initiating population) to give rise to MF in xenotransplanted NSGS mice. >5x104 FACS-sorted CD34+ HSPCs from the peripheral blood of MF patients with JAK2V617F (n=12), CALRindels (n=7) and MPLW515L (n=2) were transplanted into sublethally irradiated (200rads) NSGS mice via X-ray guided intra-tibial injection. We observed robust engraftment of patient-derived cells at 12 weeks post-transplant regardless of their genetic background or donor patient disease severity (Fig 1A). Post-transplant, BM analysis revealed robust expansion of phenotypically defined MF HSCs relative to cord blood CD34+ control recipients, suggesting a permissive niche for MF HSCs to undergo self-renewal. Remarkably, transplantation of CD34+ cells produced other hallmarks of MF in recipient animals such as splenomegaly, thrombocytosis and most importantly BM reticulin fibrosis in all recipients (Fig 1B). We assessed the clonal architecture of engrafted human cells compared to the primary disease in the donor patients through exome sequencing of CD34+ cells prior to transplantation and hCD45+ cells from MF xenografts. We found that the clonal and subclonal mutational landscape observed in CD34+ cells prior to transplantation was maintained in recipient mice (Fig 1C), suggesting that the PDX model accurately reflects the cellular composition of the primary disease. Intriguingly, in two of the xenografted patient samples, we identified additional mutations that were not detected in the primary patient samples using standard sequencing - namely TP53R248Q and EZH2Y663H respectively. Two years after we detected these mutations in PDXs, these MF patients transformed into sAML with acquisition of TP53R248Q and EZH2Y663H mutations. We performed droplet digital PCR and demonstrated that indeed rare pre-leukemic subclones containing these mutations were present at low levels (< 0.01% VAF) in chronic stage MF patients at least two years prior to sAML progression. These data also suggested that these rare subclones responsible for leukemic transformation expand significantly (>300 fold) under the selective pressure of transplantation in NSGS mice. Additional validation of these findings in a further six pre-sAML MF patient samples is currently ongoing. If successful, this model could be used to prospectively identify rising leukemic clones in chronic stage MF patients, which are below the level of detect of standard sequencing as a mechanism to stratify such patients for more aggressive treatments. While sequencing can identify ultra-rare variants, it cannot discern their functional potential for sAML transformation, which is the advantage of this approach. Finally, we harnessed this system for pre-clinical studies, initially focusing on inhibiting the JAK/STAT signaling pathway. Ruxolitinib treatment in MF PDXs produced remarkably similar phenotypes as observed in patients. We observed a small, but significant reduction in engraftment of MF cells in the BM and a sharp reduction in spleen size in Ruxolitinib-treated group compared to vehicle control. Ruxoltinib treatment however did not reduce the frequency of MF HSCs, the disease initiating population or lessen the degree of reticulin fibrosis. These data suggest that this system can be used as a reliable, clinically-relevant drug screening platform. Taken together, we offer the field a critical, previously missing biologically relevant screening system for validation of MPN drug targets identified in cell lines or genetic mouse models prior to moving forward into clinical trials. Disclosures Oh: Blueprint Medicines: Consultancy; Celgene/BMS: Consultancy; Constellation: Consultancy; CTI Biopharma: Consultancy; Disc Medicine: Consultancy; Gilead Sciences: Consultancy; Incyte Corporation: Consultancy; Kartos Therapeutics: Consultancy; Novartis: Consultancy; PharmaEssentia: Consultancy.


2019 ◽  
Vol 34 (10) ◽  
pp. 1876-1890 ◽  
Author(s):  
M J Xavier ◽  
B Nixon ◽  
S D Roman ◽  
R J Scott ◽  
J R Drevet ◽  
...  

Abstract STUDY QUESTION Do all regions of the paternal genome within the gamete display equivalent vulnerability to oxidative DNA damage? SUMMARY ANSWER Oxidative DNA damage is not randomly distributed in mature human spermatozoa but is instead targeted, with particular chromosomes being especially vulnerable to oxidative stress. WHAT IS KNOWN ALREADY Oxidative DNA damage is frequently encountered in the spermatozoa of male infertility patients. Such lesions can influence the incidence of de novo mutations in children, yet it remains to be established whether all regions of the sperm genome display equivalent susceptibility to attack by reactive oxygen species. STUDY DESIGN, SIZE, DURATION Human spermatozoa obtained from normozoospermic males (n = 8) were split into equivalent samples and subjected to either hydrogen peroxide (H2O2) treatment or vehicle controls before extraction of oxidized DNA using a modified DNA immunoprecipitation (MoDIP) protocol. Specific regions of the genome susceptible to oxidative damage were identified by next-generation sequencing and validated in the spermatozoa of normozoospermic males (n = 18) and in patients undergoing infertility evaluation (n = 14). PARTICIPANTS/MATERIALS, SETTING, METHODS Human spermatozoa were obtained from normozoospermic males and divided into two identical samples prior to being incubated with either H2O2 (5 mm, 1 h) to elicit oxidative stress or an equal volume of vehicle (untreated controls). Alternatively, spermatozoa were obtained from fertility patients assessed as having high basal levels of oxidative stress within their spermatozoa. All semen samples were subjected to MoDIP to selectively isolate oxidized DNA, prior to sequencing of the resultant DNA fragments using a next-generation whole-genomic sequencing platform. Bioinformatic analysis was then employed to identify genomic regions vulnerable to oxidative damage, several of which were selected for real-time quantitative PCR (qPCR) validation. MAIN RESULTS AND THE ROLE OF CHANCE Approximately 9000 genomic regions, 150–1000 bp in size, were identified as highly vulnerable to oxidative damage in human spermatozoa. Specific chromosomes showed differential susceptibility to damage, with chromosome 15 being particularly sensitive to oxidative attack while the sex chromosomes were protected. Susceptible regions generally lay outside protamine- and histone-packaged domains. Furthermore, we confirmed that these susceptible genomic sites experienced a dramatic (2–15-fold) increase in their burden of oxidative DNA damage in patients undergoing infertility evaluation compared to normal healthy donors. LIMITATIONS, REASONS FOR CAUTION The limited number of samples analysed in this study warrants external validation, as do the implications of our findings. Selection of male fertility patients was based on high basal levels of oxidative stress within their spermatozoa as opposed to specific sub-classes of male factor infertility. WIDER IMPLICATIONS OF THE FINDINGS The identification of genomic regions susceptible to oxidation in the male germ line will be of value in focusing future analyses into the mutational load carried by children in response to paternal factors such as age, the treatment of male infertility using ART and paternal exposure to environmental toxicants. STUDY FUNDING/COMPETING INTEREST(S) Project support was provided by the University of Newcastle’s (UoN) Priority Research Centre for Reproductive Science. M.J.X. was a recipient of a UoN International Postgraduate Research Scholarship. B.N. is the recipient of a National Health and Medical Research Council of Australia Senior Research Fellowship. Authors declare no conflict of interest.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2413-2413
Author(s):  
Wei Du ◽  
Reena Rani ◽  
Jared Sipple ◽  
Jonathan Schick ◽  
Qishen Pang

Abstract Abstract 2413 Oxidative stress has been implicated in the pathogenesis of many human diseases including Fanconi anemia (FA), a genetic disorder associated with bone marrow failure and progression to leukemia and other cancers. Here we show that several major anti-oxidant defense genes, including Glutathione peroxidase 1, Peroxiredoxin 3, Thioredoxin reductase 1, Superoxide dismutases 1, NAD(P)H:quinone oxireductase and Catalase, are down-regulated in bone marrow cells of FA patients. This gene down-regulation is selectively associated with increased oxidative DNA damage in the promoters of these anti-oxidant defense genes. Further, we show that both increased initial damage and reduced repair rate contribute to augmented oxidative DNA damage in FA cells. Using cell-based assays to assess promoter activity and damage repair kinetics, we demonstrate that FA proteins function to protect the promoter DNA from oxidative damage. Mechanistically, FA proteins appeared to act in concert with Brg1, a chromatin-remodeling ATPase subunit of the BAF complex. Specifically, Brg1 binds to the promoters of the anti-oxidant defense genes in steady state. Upon challenge with oxidative stress, FANCA and FANCD2 proteins are recruited to the promoter DNA, which correlates with significant increase in the binding of Brg1 within the promoter regions. Intriguingly, the formation of the FA-Brg1-promoter complex results in a marked decrease in nuclease hypersensitivity and oxidative damage in the promoter DNA in normal cells compared to FA cells. Finally, disassociation of the FA proteins from the Brg1-promoter complex parallels Pol II loading, suggesting a regulatory role for the FA proteins in transcription. Taken together, the study identifies a role of FA proteins in protecting anti-oxidant genes from oxidative damage. Disclosures: No relevant conflicts of interest to declare.


Psychiatry ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 15-25
Author(s):  
S. G. Nikitina ◽  
E. S. Ershova ◽  
Ju. M. Chudakova ◽  
G. V. Shmarina ◽  
N. N. Veiko ◽  
...  

Background: pathogen heterogeneity and complexity are the main obstacles for schizophrenia and autism spectrum disorders (ASD) differential diagnosis in children. The role of oxidative stress in the molecular mechanisms of schizophrenia and autism pathogenesis is beyond doubt. Free radicals that accumulate during stress can cause oxidative modifications and the formation of breaks in the сell-free DNA (cfDNA) and nuclear DNA of blood cells. To date, it has been proven that 8-hydroxy-2’- deoxyguanosine (8-OHdG) can be considered as an oxidative stress biomarker. However, it is still unclear how pronounced the genotoxic consequences of oxidative stress are in ASD of varying severity and in childhood onset schizophrenia (COS). Objective: to study the relationship between the oxidative DNA damage level in peripheral blood cells and the circulating cell-free DNA characteristics with the severity of COS and the course of ASD in children. Patients and methods: blood samples of 96 patients with childhood autism (CA — F84.0 according to ICD-10), atypical autism (AA — F84.1 according to ICD-10) and with childhood onset schizophrenia (COS — F20.8 according to ICD-10) were obtained from the Child Psychiatry Department of the Mental health research center. Blood samples of the control group (34 people) — from the collection of samples of the Research Centre for medical Genetics. The selection of patients was carried out using the clinical and psychopathological method. Cell-free DNA was isolated by extraction with organic solvents. The concentration of cfDNA was determined fluorimetrically. The level of 8-OHdG in cell-free DNA was determined by binding of the corresponding antibodies on membrane filters, endonuclease activity was determined by radial diffusion in a gel. G0-peripheral blood lymphocytes were isolated by gradient centrifugation. The level of 8-OHdG and the level of the phosphorylated form of histone H2AX (yH2AX) in G0-peripheral blood lymphocytes were analyzed in fixed cells by flow cytofluorometry using appropriate antibodies. Statistical processing was carried out using Microsoft Office Excel, Statistica 6.0, StatGraph. Results and conclusions: oxidative stress has different severity in ASD, occurring in severe form (AA) and mild/moderate form (CA). In CA, the level of oxidative damage to the DNA of lymphocytes tends to increase, but does not reach statistically significant level; the level of oxidative damage to cfDNA does not differ from the control. In AA and, to an even stronger extent, in COS, the level of oxidative damage to the DNA of cells and cfDNA is significantly increased, which indicates the development of systemic oxidative stress, which is not compensated by the body’s antioxidant system. The level of 8-OHdG in the composition of the cfDNA and DNA of the nuclei of peripheral blood cells can be a marker of oxidative stress, which is important not only for diagnosing the severity of the pathological process, but also for treatment regimens development for COS and ASD in children.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4961-4961
Author(s):  
Charikleia Kelaidi ◽  
Dimitrios Kokkinidis ◽  
Maria Protopappa ◽  
Georgios Papaioannou ◽  
Ioannis Batsis ◽  
...  

Abstract Abstract 4961 Background: Platelet increase under azacitidine in patients with myelodysplastic syndrome (MDS) has been acknowledged as an early predictive factor of response to treatment. However, extreme thrombocytosis under azacitidine has not been reported. Methods: We studied consecutive patients with MDS or MDS/myeloproliferative neoplasm (MDS/MPN) who had platelet counts near or over 1, 000 G/L under azacitidine. Results: Four patients, sex ratio 1:1, with median age of 65 years, had extreme thrombocytosis under azacitidine. Baseline characteristics were: WHO classification RAEB-2/CMML-1/CMML-2 in 2/1/1 patients, median platelet count 248 G/L (<400 G/L in all), normal karyotype/+8, −9/−7 in 2/1/1 patients, IPSS low/int-2/high in 1/2/1 patients. None had reticulinic fibrosis or ring sideroblasts>15% at baseline. A median number of 8 cycles of azacitidine was administered. Individual platelet counts reached 2, 960 G/L, 800 G/L, 1, 188 G/L and 2, 740 G/L. Thrombocytosis occured early after treatment onset or resumption (Figure 1). Histologic findings under treatment were: Increased cellularity (N=4), micromegakaryocytes and other signs of megakaryocytic dysplasia (N=4), reticulinic fibrosis grade I and II in 1 and 2 patients, respectively. JAK2 V617F mutation was detected in 1 patient (with maximum platelet count of 2, 900 G/L) and was undetectable in the remaining patients. None had a thrombotic or hemorrhagic event. Two patients had a concomitant increase of WBC count. Response to azacitidine was CR, PR and stable disease in 1/1/2 patients. Three patients received hydroxyurea (HU) in addition to azacitidine and one patient underwent hematopoietic stem cell transplantation (HCT). AML transformation occurred in 1 patient 25 months after azacitidine onset. Median overall survival after azacitidine onset was 25 months. Conclusion: Extreme thrombocytosis of the range of essential thrombocytosis, with megakaryocytic dysplasia and hyperplasia, was noted under azacitidine in 4 patients with MDS-MDS/MPN and normal baseline platelet count. Hypothetically, azacitidine may induce the expression of critical genes of megakaryopoiesis or platelet release in patients with rare mutations. Notably, JAK2 mutation was detected in only one patient. Alternatively, demethylation could unmask an underlying unclassified MDS/MPN similar to RARS-T. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-2
Author(s):  
Anna S Nam ◽  
Neville Dusaj ◽  
Franco Izzo ◽  
Rekha Murali ◽  
Tarek H Mouhieddine ◽  
...  

Leukemia driver mutations have been identified in clonal hematopoiesis (CH; Jaiswal et al, NEJM, 2014). This provides a window of opportunity to interrogate the downstream impact of driver mutations in the earliest stages of neoplasia, before the accumulation of additional drivers that lead to frank malignancy. However, CH mutated cells are morphologically and phenotypically similar to normal cells. Thus, previous characterization in primary human samples have largely focused on genetic identification of these clonal outgrowths. To overcome this limitation and define the downstream effects of CH mutations, we leveraged multi-omic single-cell sequencing to profile the mutation status and whole transcriptome for the same cells at high-throughput (GoT; Nam et al, Nature, 2019). To identify CH samples, we screened 136 stem cell grafts collected for autologous transplant from multiple myeloma patients in remission (Mouhieddine et al, Nat Comm, 2020). We identified four individuals with DNMT3AR882 mutations with VAF &gt; 0.05, allowing the profiling of 27,324 CD34+ cells (Fig. 1a-b). DNMT3A R882 mutations in these human CH samples did not result in a significant differentiation block in the hematopoietic stem cells, as assessed by pseudotime analysis (Fig. 1c). However, specific differentiation skews were apparent in multi-lineage progenitors, corresponding to the highest expression of DNMT3A in mutated immature myeloid progenitors (IMP, i.e. common myeloid progenitors/granulocyte-monocyte progenitors, Fig. 1d). We observed the expansion of mutated IMPs (Fig. 1e) that showed priming toward the megakaryocytic-erythroid (ME) lineage (Fig. 1f). DNMT3AR882 lympho-myeloid primed progenitors showed a myeloid bias and disfavored lymphoid development (Fig. 1g). In these CD34+ progenitors, we identified dysregulated expressions of megakaryocytic lineage markers, such as CD9 and PLEK, consistent with the ME-bias (Fig. 1h). We also observed downregulation of lymphoid differentiation gene ZBTB1, corresponding to the myeloid over lymphoid skewing (Fig. 1h). Finally, we identified dysregulated expression of genes involved in TNF-alpha signaling (e.g. TNFRSF4, TNFSF13B), suggesting a pro-inflammatory state. To identify activated pathways, we performed a gene set enrichment analysis that revealed activation of MYC and IL-6 signaling (FDR &lt;0.05, Hallmark). A focused analysis of regulatory networks identified enhanced activity of key transcription factors (TFs) involved in ME differentiation such as GATA1 and FLI1, as well as those involved in inflammation such as NFKB/REL (FDR &lt;0.05). We also identified increased expression of polycomb repression complex 2 (PRC2) target genes (FDR &lt;0.05). To determine how aberrant DNA methylation may serve as a link between DNMT3A mutations and the observed transcriptional dysregulation, we performed single-cell multi-omics that simultaneously profiles the cells' methylome and transcriptome, linked with mutation status (Gaiti et al, Nature, 2019; Fig. 1i). By comparing the methylation rates in mutated vs. wildtype CD34+ cells within the same sample, we found that DNMT3AR882 result in selective hypomethylation that preferentially impacts CpG islands (Fig. 1j) and PRC2 targets (Fig. 1k), which may underlie the dysregulated expression of PRC2 targets in DNMT3AR882 progenitors. Notably, DNMT3AR882-induced hypomethylation was enriched in a specific sequence context in which the CpG is followed by a T nucleotide (Fig. 1l). This DNMT3AR882 motif was enriched in the DNA binding motifs of central hematopoietic TFs, including MYC/MAX (Fig. 1m), suggesting that DNMT3AR882-induced hypomethylation may serve as a mechanism to preferentially increase the activity of these TFs. Consistent with this hypothesis, joint single-cell methylome and transcriptome data revealed that the expression of MYC targets increased with hypomethylation of its binding motifs (Fig. 1n), providing a mechanism of enhanced MYC activity due to DNMT3AR882 mutations. Altogether, we report the direct examination of the consequences of DNMT3AR882 mutations in primary CD34+ cells in CH. We discovered that DNMT3A is most highly expressed in mutated multi-lineage progenitors, promoting their expansion and biasing their downstream differentiation. This is accompanied by a disruption to differentiation through PRC2 and MYC target reactivation via selective hypomethylation. Disclosures Abdel-Wahab: Envisagenics Inc.: Current equity holder in private company; H3 Biomedicine Inc.: Consultancy, Research Funding; Janssen: Consultancy; Merck: Consultancy. Ghobrial:Takeda: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Karyopharm Therapeutics: Consultancy, Honoraria; Cellectar: Honoraria; Adaptive Biotechnologies: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria; Novartis: Consultancy; Noxxon Pharma: Consultancy; Genentech: Consultancy; GlaxoSmithKline: Consultancy; GNS Healthcare: Consultancy; AbbVie: Consultancy. Landau:Bristol Myers Squibb: Research Funding; Illumina: Research Funding.


Author(s):  
Hueiwang Anna Jeng ◽  
Sinjini Sikdar ◽  
Chih-Hong Pan ◽  
Guo-Ping Chang-Chien

Abstract Objective This study aimed to determine (i) associations between levels of the polycyclic aromatic hydrocarbon (PAH) mixture with 16 targeted PAH compounds in the personal breathing zone area and sperm oxidative DNA damage, (ii) associations between levels of individual PAH compounds and sperm oxidative DNA damage, (iii) oxidative stress as the mode of action for the genotoxic effects on sperm, and (iv) any dose–response relationship between exposure to the PAH mixture and/or individual PAH compounds and sperm oxidative DNA damage. Methods Sixteen targeted PAH compounds in the personal breathing zone area of 38 coke-oven workers and 24 control subjects were quantified using gas chromatography–mass spectrometry. Sperm oxidative damage and status were evaluated by measuring levels of sperm 7,8-dihydro-8-oxoguanie (8-oxodGuo), seminal malondialdehyde (MDA) and seminal reactive oxygen species (ROS). Bayesian kernel machine regression with hierarchical variable selection process was employed to determine associations of the PAH mixture and the biomarkers of sperm oxidative damage. A novel grouping approach needed for the hierarchical variable selection process was developed based on PAH bay region and molecular weight. Results The PAH mixture exhibited a positive trend with increased sperm 8-oxodGuo levels at their lower percentiles (25th–50th). The exposure of the PAH mixture was associated with increased MDA levels in sperm. Bay and bay-like regions of the PAH mixture were the most important group for estimating the associations between the PAH mixture and sperm oxidative stress status. Benzo[a]anthracene was the main individual PAH compound that was associated with increased MDA levels. Conclusion Sperm oxidative DNA damage induced by occupational exposure to the PAH mixture had a suggestive association with increased MDA levels in coke-oven workers. Finally, the study identified that the individual PAH compound, benzo[a]anthracene, was the primary driver for the suggestive association between the PAH mixture and sperm oxidative damage.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1754-1754
Author(s):  
Alison R. Moliterno ◽  
Donna M. Williams ◽  
Michael A McDevitt ◽  
Brady L Stein ◽  
Jonathan M. Gerber ◽  
...  

Abstract Abstract 1754 For more than 100 years since the initial descriptions, polycythemia vera (PV) was defined by an aggregation of clinical and laboratory features, reported to be more common in males than females, and diagnosed on average at age 60 (Modan Blood 1965, Berlin Sem Hematol 1975). The 2005 discovery of somatic mutations in the JAK2 gene introduced the molecular era of PV and required redefinition of this disease entity. We established a prospective, observational cohort of 556 patients evaluated in our center between 2005 and 2011, of which 273 had a PV phase at some point during their myeloproliferative neoplasm (MPN). Serial samples were obtained from each patient for genomic analyses, including neutrophil JAK2V617F allele burdens, clinical karyotypes, SNP-array karyotypes, JAK2 and ASXL1 sequencing and copy number variation, allele burden analysis in sorted hematopoietic stem cell (HSC) fractions, and whole exome sequencing. These data were used to define the relationship of genotype to clinical phenotype with regard to PV epidemiology, natural history and disease transformation. Thirty three percent of the cohort was evaluated within 1 year from PV diagnosis and the median MPN disease duration at the last update of the cohort was 9 years (range 1–52 years). As of 7/2012, of the 273 PV patient cohort, 47 had antecedent essential thrombocytosis (ET/PV), 176 had PV, 43 had developed post-PV myelofibrosis (PPVMF) and 7 had developed acute leukemia (AML) (PPVAML). 270 of the 273 PV patients had JAK2 mutations, either V617F (264, 97%) or exon 12 (6, 2%); the remaining 3 (1%) are molecularly undefined. Women outnumbered men (169/104; ratio 1.6), even when stratified by ET/PV (2.1), PV (1.6), PPVMF (1.4) and PPVAML (1.3). Age at PV diagnosis was significantly younger in women, 54 (range 8–88), compared to men, 56.5 (range 15–77) (p=0.022), and the proportion diagnosed before age 40 was 26% in women compared to 10.5% in men. PPVMF occurred on average after 9 years (range 2–53 years) of PV at a median age of 62.5 years. PPVAML occurred on average after 10 years (range 3–28 years) of PV, at a median age of 71 years, significantly higher than the age at PPVMF (p=0.038). Aside from JAK2V617F, acquired 9pUPD was the most common genomic lesion in PV, occurring in 57% within the first year after PV diagnosis, in 84% of PPVMF and 100% of PPVAML patients. Studied prospectively, the prevalence of 9pUPD increased from 0 to 40% in 11 patients transitioning from ET to PV, and increased from 59% to 75% in 30 PV patients from year 1 to year 6 after diagnosis, but stayed at 90% in 11 patients pre and post transformation to PPVMF. Chromosomal loss/gain was not highly prevalent during PV (2%) in contrast to PPVMF (64%) and PPVAML (100%). The most frequent chromosomal abnormalities in PPVMF were trisomy 9 (27%), 13q deletion (12%), 1q gain(12%), 20qdeletion (8%) and 11qdel (8%), whereas the most common chromosomal abnormalities in PPVAML were 5qdel or −5 (75%), and 7qdeletion (50%), both of which were often found in the setting of complex changes (75%). Genomic lesions identified in PV and PPVMF, including JAK2V617F, 9pUPD, 11qdel, and ASXL1 mutations, were detected at high allele burdens by quantitative allele assays in flow-sorted, pluripotent HSCs. We conclude that acquisition of a JAK2 mutation is implicated in the vast majority (99%) of PV patients, that PV occurs more often in women, and that younger women (<40) particularly are at higher risk than younger men. Genomic lesions in PV and PPVMF arise and accumulate in a primitive HSC population. 9pUPD is a common occurrence during transition from JAK2V617F+ ET to PV, and while highly prevalent, age and time dependent in PV, 9pUPD is not sufficient to generate PPVMF or PPVAML. In PPVMF, JAK2 mutations associate with specific recurrent chromosomal changes that are also found in normal individuals with advancing age (9pUPD, 13qdel, 20qdel, 11qdel; Nature Genetics 44, 2012). JAK2 mutations with 9pUPD enhance the acquisition of age-associated and therapy- associated genomic instability lesions, promoting the development of PPVMF and PPVAML. Given the molecular epidemiology of PV, it will be crucial recognize and reduce the risk factors that lead to the excess acquisition of PV in young women, to identify the risk factors that lead to 9pUPD, to study whether targeted therapy can prevent the development of 9pUPD, and to avoid genotoxic therapy that accelerates genomic instability in PV. Disclosures: Streiff: sanofi-aventis: Consultancy, Honoraria; BristolMyersSquibb: Research Funding; Eisai: Consultancy; Janssen Healthcare: Consultancy; Daiichi-Sankyo: Consultancy.


Blood ◽  
2012 ◽  
Vol 119 (18) ◽  
pp. 4162-4173 ◽  
Author(s):  
Xue Li ◽  
Jared Sipple ◽  
Qishen Pang ◽  
Wei Du

Abstract Salidroside is a phenylpropanoid glycoside isolated from the medicinal plant Rhodiola rosea, which has potent antioxidant properties. Here we show that salidroside prevented the loss of hematopoietic stem cells (HSCs) in mice under oxidative stress. Quiescent HSCs were recruited into cell cycling on in vivo challenge with oxidative stress, which was blocked by salidroside. Surprisingly, salidroside does not prevent the production of reactive oxygen species but reduces hydrogen peroxide–induced DNA-strand breaks in bone marrow cells enriched for HSCs. We tested whether salidroside enhances oxidative DNA damage repair in mice deficient for 5 DNA repair pathways known to be involved in oxidative DNA damage repair; we found that salidroside activated poly(ADP-ribose)polymerase-1 (PARP-1), a component of the base excision repair pathway, in mouse bone marrow HSCs as well as primary fibroblasts and human lymphoblasts. PARP-1 activation by salidroside protects quiescent HSCs from oxidative stress–induced cycling in native animals and self-renewal defect in transplanted recipients, which was abrogated by genetic ablation or pharmacologic inhibition of PARP-1. Together, these findings suggest that activation of PARP-1 by salidroside could affect the homeostasis and function of HSCs and contribute to the antioxidant effects of salidroside.


Sign in / Sign up

Export Citation Format

Share Document