scholarly journals Prevention of Oxidative Stress-Induced Pancreatic Beta Cell Damage by Broussonetia kazinoki Siebold Fruit Extract via the ERK-Nox4 Pathway

Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 406 ◽  
Author(s):  
Hyo-Jin Kim ◽  
Donghee Kim ◽  
Haelim Yoon ◽  
Cheol Soo Choi ◽  
Yoon Sin Oh ◽  
...  

Pancreatic beta cells are vulnerable to oxidative stress, which causes beta cell death and dysfunction in diabetes mellitus. Broussonetia kazinoki Siebold (BK) is a widely used herbal medicine, but its potential effects against beta cell death-induced diabetes have not been studied. Therefore, we investigated the protective effect of an ethanolic extract of BK fruit (BKFE) against streptozotocin (STZ)-induced toxicity in pancreatic beta cells. Intraperitoneal injection of STZ in mice induced hyperglycemia; however, oral administration of BKFE significantly decreased the blood glucose level as well as HbA1c levels. BKFE treatment improved glucose tolerance and increased body weight in diabetic mice. Moreover, BKFE treatment resulted in increased serum insulin levels and insulin expression in the pancreas as well as decreased 4-hydroxynonenal levels induced by oxidative stress. Treatment with STZ decreased cell viability of mouse insulinoma cells (MIN6), which was blocked by BKFE pretreatment. BKFE significantly inhibited apoptotic cells and decreased the expression levels of cleaved-caspase-3 and cleaved-poly (ADP-ribose) polymerase (PARP) induced by STZ treatment. Production of reactive oxygen species in STZ-treated MIN6 cells was also significantly decreased by treatment with BKFE. Erk phosphorylation and Nox4 levels increased in STZ-treated MIN6 cells and the pancreas of mice injected with STZ and this increase was inhibited by treatment with BKFE. Inhibition of Erk phosphorylation by treatment with the PD98059 inhibitor or siRNA Erk also blocked the expression of Nox4 induced by STZ treatment. In conclusion, BKFE inhibits Erk phosphorylation, which in turn prevents STZ-induced oxidative stress and beta cell apoptosis. These results suggested that BKFE can be used to prevent or treat beta cell damage in diabetes.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Eunhui Seo ◽  
Eun-Kyu Lee ◽  
Cheol Soon Lee ◽  
Kwang-Hoon Chun ◽  
Mi-Young Lee ◽  
...  

Pancreatic beta-cell death is known to be the cause of deficient insulin production in diabetes mellitus. Oxidative stress is one of the major causes of beta-cell death. In this study, we investigated the effects ofPsoralea corylifoliaL. seed (PCS) extract on beta-cell death. Oral administration of PCS extract resulted in a significant improvement of hyperglycemia in streptozotocin-induced diabetic mice. PCS extract treatment improved glucose tolerance and increased serum insulin levels. To study the mechanisms involved, we investigated the effects of PCS extract on H2O2-induced apoptosis in INS-1 cells. Treatment with PCS extract inhibited cell death. PCS extract treatment decreased reactive oxygen species level and activated antioxidative enzymes. Among the major components of PCS extract, psoralen and isopsoralen (coumarins), but not bakuchiol, showed preventive effects against H2O2-induced beta-cell death. These findings indicate that PCS extract may be a potential pharmacological agent to protect against pancreatic beta-cell damage caused by oxidative stress associated with diabetes.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Xiang Kong ◽  
Chong-xiao Liu ◽  
Guo-dong Wang ◽  
Hui Yang ◽  
Xin-ming Yao ◽  
...  

Type 2 diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose and/or high serum free fatty acids. Chronic hyperlipidemia causes the dysfunction of pancreatic beta cells, which is aggravated in the presence of hyperglycemia (glucolipotoxicity). Long noncoding RNAs (lncRNAs) have been suggested to play key roles in type 1 diabetes mellitus development. However, their roles in glucolipotoxicity-induced beta cell dysfunction are not fully understood. In the present study, we identified the differentially expressed lncRNAs in INS-1 cells exposed to high glucose and palmitate (HG/PA). Among the dysregulated lncRNAs, NONRATT003679.2 (low expression in glucolipotoxicity-treated beta cells (LEGLTBC)) was involved in glucolipotoxicity-evoked rat islet beta cell damage. LEGLTBC functioned as a molecular sponge of miR-34a in INS-1 cells. Additionally, SIRT1 was identified as a target of miR-34a and LEGLTBC promoted SIRT1 expression by sponging miR-34a. The upregulation of LEGLTBC attenuated HG/PA-induced INS-1 cell injury through the promotion of SIRT1-mediated suppression of ROS accumulation and apoptosis. This is the first study to comprehensively identify the lncRNA expression profiling of HG/PA-treated INS-1 beta cells and to demonstrate that LEGLTBC functions as a competing endogenous RNA and regulates miR-34a/SIRT1-mediated oxidative stress and apoptosis in INS-1 cells undergoing glucolipotoxicity.


Diabetes ◽  
2001 ◽  
Vol 50 (Supplement 1) ◽  
pp. S52-S57 ◽  
Author(s):  
D. Pipeleers ◽  
A. Hoorens ◽  
M. Marchial-Pipeleers ◽  
M. Van de Casteele ◽  
L. Bouwens ◽  
...  

2021 ◽  
pp. 112361
Author(s):  
Isabel González-Mariscal ◽  
Macarena Pozo Morales ◽  
Silvana Y. Romero-Zerbo ◽  
Vanesa Espinosa-Jimenez ◽  
Alejandro Escamilla-Sánchez ◽  
...  

2018 ◽  
Vol 52 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Eiji Yamato

Abstract Objective. Histone deacytylase inhibitors (HDACis) inhibit the deacetylation of the lysine residue of proteins, including histones, and regulate the transcription of a variety of genes. Recently, HDACis have been used clinically as anti-cancer drugs and possible anti-diabetic drugs. Even though HDACis have been proven to protect the cytokine-induced damage of pancreatic beta cells, evidence also shows that high doses of HDACis are cytotoxic. In the present study, we, therefore, investigated the eff ect of HDACis on insulin secretion in a pancreatic beta cell line. Methods. Pancreatic beta cells MIN6 were treated with selected HDACis (trichostatin A, TSA; valproic acid, VPA; and sodium butyrate, NaB) in medium supplemented with 25 mM glucose and 13% heat-inactivated fetal bovine serum (FBS) for indicated time intervals. Protein expression of Pdx1 and Mafa in MIN6 cells was demonstrated by immunohistochemistry and immunocytochemistry, expression of Pdx1 and Mafa genes was measured by quantitative RT-PCR method. Insulin release from MIN6 cells and insulin cell content were estimated by ELISA kit. Superoxide production in MIN6 cells was measured using a Total ROS/Superoxide Detection System. Results. TSA, VPA, and NaB inhibited the expression of Pdx1 and Mafa genes and their products. TSA treatment led to beta cell malfunction, characterized by enhanced insulin secretion at 3 and 9 mM glucose, but impaired insulin secretion at 15 and 25 mM glucose. Th us, TSA induced dysregulation of the insulin secretion mechanism. TSA also enhanced reactive oxygen species production in pancreatic beta cells. Conclusions. Our results showed that HDACis caused failure to suppress insulin secretion at low glucose concentrations and enhance insulin secretion at high glucose concentrations. In other words, when these HDACis are used clinically, high doses of HDACis may cause hypoglycemia in the fasting state and hyperglycemia in the fed state. When using HDACis, physicians should, therefore, be aware of the capacity of these drugs to modulate the insulin secretory capacity of pancreatic beta cells.


2020 ◽  
Author(s):  
Halesha D. Basavarajappa ◽  
Jose M. Irimia ◽  
Patrick T. Fueger

AbstractAvoiding loss of functional beta cell mass is critical for preventing or treating diabetes. Currently, the molecular mechanisms underlying beta cell death are partially understood, and there is a need to identify new targets for developing novel therapeutics to treat diabetes. Previously, our group established that Mig6, an inhibitor of EGF signaling, mediates beta cell death under diabetogenic conditions. The objective of this study was to clarify the mechanisms linking diabetogenic stimuli to beta cell death by investigating Mig6-interacting proteins. Using co-immunoprecipitation and mass spectrometry, we evaluated the binding partners of Mig6 under both normal glucose (NG) and glucolipotoxic (GLT) conditions in beta cells. We identified that Mig6 interacts dynamically with NumbL; whereas Mig6 associates with NumbL under NG, this interaction is disrupted under GLT conditions. Further, we demonstrate that siRNA-mediated suppression of NumbL expression in beta cells prevented apoptosis under GLT conditions by blocking activation of NF-κB signaling. Using co-immunoprecipitation experiments we observed that NumbL’s interactions with TRAF6, a key component of NFκB signaling, are increased under GLT conditions. The interactions among Mig6, NumbL, and TRAF6 are dynamic and context-dependent. We propose a model wherein these interactions activate pro-apoptotic NF-κB signaling while blocking pro-survival EGF signaling under diabetogenic conditions, leading to beta cell apoptosis. These findings indicate that NumbL should be further investigated as a candidate anti-diabetic therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document