Role of pancreatic beta-cells in the process of beta-cell death

Diabetes ◽  
2001 ◽  
Vol 50 (Supplement 1) ◽  
pp. S52-S57 ◽  
Author(s):  
D. Pipeleers ◽  
A. Hoorens ◽  
M. Marchial-Pipeleers ◽  
M. Van de Casteele ◽  
L. Bouwens ◽  
...  
Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 406 ◽  
Author(s):  
Hyo-Jin Kim ◽  
Donghee Kim ◽  
Haelim Yoon ◽  
Cheol Soo Choi ◽  
Yoon Sin Oh ◽  
...  

Pancreatic beta cells are vulnerable to oxidative stress, which causes beta cell death and dysfunction in diabetes mellitus. Broussonetia kazinoki Siebold (BK) is a widely used herbal medicine, but its potential effects against beta cell death-induced diabetes have not been studied. Therefore, we investigated the protective effect of an ethanolic extract of BK fruit (BKFE) against streptozotocin (STZ)-induced toxicity in pancreatic beta cells. Intraperitoneal injection of STZ in mice induced hyperglycemia; however, oral administration of BKFE significantly decreased the blood glucose level as well as HbA1c levels. BKFE treatment improved glucose tolerance and increased body weight in diabetic mice. Moreover, BKFE treatment resulted in increased serum insulin levels and insulin expression in the pancreas as well as decreased 4-hydroxynonenal levels induced by oxidative stress. Treatment with STZ decreased cell viability of mouse insulinoma cells (MIN6), which was blocked by BKFE pretreatment. BKFE significantly inhibited apoptotic cells and decreased the expression levels of cleaved-caspase-3 and cleaved-poly (ADP-ribose) polymerase (PARP) induced by STZ treatment. Production of reactive oxygen species in STZ-treated MIN6 cells was also significantly decreased by treatment with BKFE. Erk phosphorylation and Nox4 levels increased in STZ-treated MIN6 cells and the pancreas of mice injected with STZ and this increase was inhibited by treatment with BKFE. Inhibition of Erk phosphorylation by treatment with the PD98059 inhibitor or siRNA Erk also blocked the expression of Nox4 induced by STZ treatment. In conclusion, BKFE inhibits Erk phosphorylation, which in turn prevents STZ-induced oxidative stress and beta cell apoptosis. These results suggested that BKFE can be used to prevent or treat beta cell damage in diabetes.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Elisa Fernández-Millán ◽  
Carlos Guillén

Type 2 diabetes (T2D) results from impaired beta-cell function and insufficient beta-cell mass compensation in the setting of insulin resistance. Current therapeutic strategies focus their efforts on promoting the maintenance of functional beta-cell mass to ensure appropriate glycemic control. Thus, understanding how beta-cells communicate with metabolic and non-metabolic tissues provides a novel area for investigation and implicates the importance of inter-organ communication in the pathology of metabolic diseases such as T2D. In this review, we provide an overview of secreted factors from diverse organs and tissues that have been shown to impact beta-cell biology. Specifically, we discuss experimental and clinical evidence in support for a role of gut to beta-cell crosstalk, paying particular attention to bacteria-derived factors including short-chain fatty acids, lipopolysaccharide, and factors contained within extracellular vesicles that influence the function and/or the survival of beta cells under normal or diabetogenic conditions.


Diabetologia ◽  
2014 ◽  
Vol 57 (4) ◽  
pp. 765-775 ◽  
Author(s):  
Yoo Jin Park ◽  
Minna Woo ◽  
Timothy J. Kieffer ◽  
Razqallah Hakem ◽  
Nooshin Safikhan ◽  
...  

2020 ◽  
Author(s):  
Halesha D. Basavarajappa ◽  
Jose M. Irimia ◽  
Patrick T. Fueger

AbstractAvoiding loss of functional beta cell mass is critical for preventing or treating diabetes. Currently, the molecular mechanisms underlying beta cell death are partially understood, and there is a need to identify new targets for developing novel therapeutics to treat diabetes. Previously, our group established that Mig6, an inhibitor of EGF signaling, mediates beta cell death under diabetogenic conditions. The objective of this study was to clarify the mechanisms linking diabetogenic stimuli to beta cell death by investigating Mig6-interacting proteins. Using co-immunoprecipitation and mass spectrometry, we evaluated the binding partners of Mig6 under both normal glucose (NG) and glucolipotoxic (GLT) conditions in beta cells. We identified that Mig6 interacts dynamically with NumbL; whereas Mig6 associates with NumbL under NG, this interaction is disrupted under GLT conditions. Further, we demonstrate that siRNA-mediated suppression of NumbL expression in beta cells prevented apoptosis under GLT conditions by blocking activation of NF-κB signaling. Using co-immunoprecipitation experiments we observed that NumbL’s interactions with TRAF6, a key component of NFκB signaling, are increased under GLT conditions. The interactions among Mig6, NumbL, and TRAF6 are dynamic and context-dependent. We propose a model wherein these interactions activate pro-apoptotic NF-κB signaling while blocking pro-survival EGF signaling under diabetogenic conditions, leading to beta cell apoptosis. These findings indicate that NumbL should be further investigated as a candidate anti-diabetic therapeutic target.


Author(s):  
Geert Antoine Martens ◽  
Geert Stange ◽  
Lorenzo Piemonti ◽  
Jasper Anckaert ◽  
Zhidong Ling ◽  
...  

Ongoing beta cell death in type 1 diabetes (T1D) can be detected using biomarkers selectively discharged by dying beta cells into plasma. MicroRNA-375 (miR-375) ranks among top biomarkers based on studies in animal models and human islet transplantation. Our objective was to identify additional microRNAs that are co-released with miR-375 proportionate to the amount of beta cell destruction. RT-PCR profiling of 733 microRNAs in a discovery cohort of T1D patients 1 hour before/after islet transplantation indicated increased plasma levels of 22 microRNAs. Sub-selection for beta cell selectivity resulted in 15 microRNAs that were subjected to double-blinded multicenter analysis. This led to identification of 8 microRNAs that were consistently increased during early graft destruction: besides miR-375, these included miR-132/204/410/200a/429/125b, microRNAs with known function and enrichment in beta cells. Their potential clinical translation was investigated in a third independent cohort of 46 transplant patients, by correlating post-transplant microRNA levels to C-peptide levels 2 months later. Only miR-375 and miR-132 had prognostic potential for graft outcome and none of the newly identified microRNAs outperformed miR-375 in multiple regression. In conclusion, this study reveals multiple beta cell-enriched microRNAs that are co-released with miR-375 and can be used as complementary biomarkers of beta cell death.


2020 ◽  
Author(s):  
Yi-Chun Chen ◽  
Andrew J. Lutkewitte ◽  
Halesha D. Basavarajappa ◽  
Patrick T. Fueger

ABSTRACTA loss of functional beta cell mass is a final etiological event in the development of frank type 2 diabetes (T2D). To preserve or expand beta cells and therefore treat/prevent T2D, growth factors have been considered therapeutically but have largely failed to achieve robust clinical success. The molecular mechanisms preventing the activation of mitogenic signaling pathways from maintaining functional beta cell mass during the development of T2D remain unknown. We speculated that endogenous negative effectors of mitogenic signaling cascades impede beta cell survival/expansion. Thus, we tested the hypothesis that a stress-inducible epidermal growth factor receptor (EGFR) inhibitor, Mitogen-inducible gene 6 (Mig6), regulates beta cell fate in a T2D milieu. To this end, we determined that: 1) glucolipotoxicity (GLT) induces Mig6, thereby blunting EGFR signaling cascades, and 2) Mig6 mediates molecular events regulating beta cell survival/death. We discovered that GLT impairs EGFR activation, and Mig6 is elevated in human islets from T2D donors as well as GLT-treated rodent islets and 832/13 INS-1 beta cells. Mig6 is essential for GLT-induced EGFR desensitization, as Mig6 suppression rescued the GLT-impaired EGFR and ERK1/2 activation. Further, Mig6 mediated EGFR but not insulin-like growth factor-1 receptor nor hepatocyte growth factor receptor activity in beta cells. Finally, we identified that elevated Mig6 augmented beta cell apoptosis, as Mig6 suppression reduced apoptosis during GLT. In conclusion, we established that T2D and GLT induce Mig6 in pancreatic beta cells. The elevated Mig6 desensitizes EGFR signaling and induces beta cell death. Our findings suggest that Mig6 could be a novel therapeutic target for T2D, as blocking Mig6 could possibly enhance mitogenic signaling cascades in a diabetic milieu to promote beta cell survival and prevent beta cell death.


Sign in / Sign up

Export Citation Format

Share Document