scholarly journals Dependence Representation Learning with Convolutional Neural Networks and 2D Histograms

2020 ◽  
Vol 10 (3) ◽  
pp. 955
Author(s):  
Taejun Kim ◽  
Han-joon Kim

Researchers frequently use visualizations such as scatter plots when trying to understand how random variables are related to each other, because a single image represents numerous pieces of information. Dependency measures have been widely used to automatically detect dependencies, but these measures only take into account a few types of data, such as the strength and direction of the dependency. Based on advances in the applications of deep learning to vision, we believe that convolutional neural networks (CNNs) can come to understand dependencies by analyzing visualizations, as humans do. In this paper, we propose a method that uses CNNs to extract dependency representations from 2D histograms. We carried out three sorts of experiments and found that CNNs can learn from visual representations. In the first experiment, we used a synthetic dataset to show that CNNs can perfectly classify eight types of dependency. Then, we showed that CNNs can predict correlations based on 2D histograms of real datasets and visualize the learned dependency representation space. Finally, we applied our method and demonstrated that it performs better than the AutoLearn feature generation algorithm in terms of average classification accuracy, while generating half as many features.

2020 ◽  
Vol 36 (5) ◽  
pp. 743-749
Author(s):  
Xingwang Li ◽  
Xiaofei Fan ◽  
Lili Zhao ◽  
Sheng Huang ◽  
Yi He ◽  
...  

HighlightsThis study revealed the feasibility of to classify pepper seed varieties using multispectral imaging combined with one-dimensional convolutional neural network (1D-CNN).Convolutional neural networks were adopted to develop models for prediction of seed varieties, and the performance was compared with KNN and SVM.In this experiment, the classification effect of the SVM classification model is the best, but the 1D-CNN classification model is relatively easy to implement.Abstract. When non-seed materials are mixed in seeds or seed varieties of low value are mixed in high value varieties, it will cause losses to growers or businesses. Thus, the successful discrimination of seed varieties is critical for improvement of seed ralue. In recent years, convolutional neural networks (CNNs) have been used in classification of seed varieties. The feasibility of using multispectral imaging combined with one-dimensional convolutional neural network (1D-CNN) to classify pepper seed varieties was studied. The total number of three varieties of samples was 1472, and the average spectral curve between 365nm and 970nm of the three varieties was studied. The data were analyzed using full bands of the spectrum or the feature bands selected by successive projection algorithm (SPA). SPA extracted 9 feature bands from 19 bands (430, 450, 470, 490, 515, 570, 660, 780, and 880 nm). The classification accuracy of the three classification models developed with full band using K nearest neighbors (KNN), support vector machine (SVM), and 1D-CNN were 85.81%, 97.70%, and 90.50%, respectively. With full bands, SVM and 1D-CNN performed significantly better than KNN, and SVM performed slightly better than 1D-CNN. With feature bands, the testing accuracies of SVM and 1D-CNN were 97.30% and 92.6%, respectively. Although the classification accuracy of 1D-CNN was not the highest, the ease of operation made it the most feasible method for pepper seed variety prediction. Keywords: Multispectral imaging, One-dimensional convolutional neural network, Pepper seed, Variety classification.


Author(s):  
Sebastian Nowak ◽  
Narine Mesropyan ◽  
Anton Faron ◽  
Wolfgang Block ◽  
Martin Reuter ◽  
...  

Abstract Objectives To investigate the diagnostic performance of deep transfer learning (DTL) to detect liver cirrhosis from clinical MRI. Methods The dataset for this retrospective analysis consisted of 713 (343 female) patients who underwent liver MRI between 2017 and 2019. In total, 553 of these subjects had a confirmed diagnosis of liver cirrhosis, while the remainder had no history of liver disease. T2-weighted MRI slices at the level of the caudate lobe were manually exported for DTL analysis. Data were randomly split into training, validation, and test sets (70%/15%/15%). A ResNet50 convolutional neural network (CNN) pre-trained on the ImageNet archive was used for cirrhosis detection with and without upstream liver segmentation. Classification performance for detection of liver cirrhosis was compared to two radiologists with different levels of experience (4th-year resident, board-certified radiologist). Segmentation was performed using a U-Net architecture built on a pre-trained ResNet34 encoder. Differences in classification accuracy were assessed by the χ2-test. Results Dice coefficients for automatic segmentation were above 0.98 for both validation and test data. The classification accuracy of liver cirrhosis on validation (vACC) and test (tACC) data for the DTL pipeline with upstream liver segmentation (vACC = 0.99, tACC = 0.96) was significantly higher compared to the resident (vACC = 0.88, p < 0.01; tACC = 0.91, p = 0.01) and to the board-certified radiologist (vACC = 0.96, p < 0.01; tACC = 0.90, p < 0.01). Conclusion This proof-of-principle study demonstrates the potential of DTL for detecting cirrhosis based on standard T2-weighted MRI. The presented method for image-based diagnosis of liver cirrhosis demonstrated expert-level classification accuracy. Key Points • A pipeline consisting of two convolutional neural networks (CNNs) pre-trained on an extensive natural image database (ImageNet archive) enables detection of liver cirrhosis on standard T2-weighted MRI. • High classification accuracy can be achieved even without altering the pre-trained parameters of the convolutional neural networks. • Other abdominal structures apart from the liver were relevant for detection when the network was trained on unsegmented images.


2021 ◽  
Vol 65 (1) ◽  
pp. 11-22
Author(s):  
Mengyao Lu ◽  
Shuwen Jiang ◽  
Cong Wang ◽  
Dong Chen ◽  
Tian’en Chen

HighlightsA classification model for the front and back sides of tobacco leaves was developed for application in industry.A tobacco leaf grading method that combines a CNN with double-branch integration was proposed.The A-ResNet network was proposed and compared with other classic CNN networks.The grading accuracy of eight different grades was 91.30% and the testing time was 82.180 ms, showing a relatively high classification accuracy and efficiency.Abstract. Flue-cured tobacco leaf grading is a key step in the production and processing of Chinese-style cigarette raw materials, directly affecting cigarette blend and quality stability. At present, manual grading of tobacco leaves is dominant in China, resulting in unsatisfactory grading quality and consuming considerable material and financial resources. In this study, for fast, accurate, and non-destructive tobacco leaf grading, 2,791 flue-cured tobacco leaves of eight different grades in south Anhui Province, China, were chosen as the study sample, and a tobacco leaf grading method that combines convolutional neural networks and double-branch integration was proposed. First, a classification model for the front and back sides of tobacco leaves was trained by transfer learning. Second, two processing methods (equal-scaled resizing and cropping) were used to obtain global images and local patches from the front sides of tobacco leaves. A global image-based tobacco leaf grading model was then developed using the proposed A-ResNet-65 network, and a local patch-based tobacco leaf grading model was developed using the ResNet-34 network. These two networks were compared with classic deep learning networks, such as VGGNet, GoogLeNet-V3, and ResNet. Finally, the grading results of the two grading models were integrated to realize tobacco leaf grading. The tobacco leaf classification accuracy of the final model, for eight different grades, was 91.30%, and grading of a single tobacco leaf required 82.180 ms. The proposed method achieved a relatively high grading accuracy and efficiency. It provides a method for industrial implementation of the tobacco leaf grading and offers a new approach for the quality grading of other agricultural products. Keywords: Convolutional neural network, Deep learning, Image classification, Transfer learning, Tobacco leaf grading


2020 ◽  
Author(s):  
Philippe Schwaller ◽  
Daniel Probst ◽  
Alain C. Vaucher ◽  
Vishnu H Nair ◽  
David Kreutter ◽  
...  

<div><div><div><p>Organic reactions are usually assigned to classes grouping reactions with similar reagents and mechanisms. Reaction classes facilitate communication of complex concepts and efficient navigation through chemical reaction space. However, the classification process is a tedious task, requiring the identification of the corresponding reaction class template via annotation of the number of molecules in the reactions, the reaction center and the distinction between reactants and reagents. In this work, we show that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We also show that the learned representations can be used as reaction fingerprints which capture fine-grained differences between reaction classes better than traditional reaction fingerprints. The unprecedented insights into chemical reaction space enabled by our learned fingerprints is illustrated by an interactive reaction atlas providing visual clustering and similarity searching. </p><p><br></p><p>Code: https://github.com/rxn4chemistry/rxnfp</p><p>Tutorials: https://rxn4chemistry.github.io/rxnfp/</p><p>Interactive reaction atlas: https://rxn4chemistry.github.io/rxnfp//tmaps/tmap_ft_10k.html</p></div></div></div>


2020 ◽  
Vol 12 (7) ◽  
pp. 1070 ◽  
Author(s):  
Somayeh Nezami ◽  
Ehsan Khoramshahi ◽  
Olli Nevalainen ◽  
Ilkka Pölönen ◽  
Eija Honkavaara

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were employed to classify tree species in a test site in Finland. The classifiers were trained with a dataset of 3039 manually labelled trees. Then the accuracies were assessed by employing independent datasets of 803 records. To find the most efficient set of feature combination, we compare the performances of 3D-CNN models trained with hyperspectral (HS) channels, Red-Green-Blue (RGB) channels, and canopy height model (CHM), separately and combined. It is demonstrated that the proposed 3D-CNN model with RGB and HS layers produces the highest classification accuracy. The producer accuracy of the best 3D-CNN classifier on the test dataset were 99.6%, 94.8%, and 97.4% for pines, spruces, and birches, respectively. The best 3D-CNN classifier produced ~5% better classification accuracy than the MLP with all layers. Our results suggest that the proposed method provides excellent classification results with acceptable performance metrics for HS datasets. Our results show that pine class was detectable in most layers. Spruce was most detectable in RGB data, while birch was most detectable in the HS layers. Furthermore, the RGB datasets provide acceptable results for many low-accuracy applications.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6763
Author(s):  
Mads Jochumsen ◽  
Imran Khan Niazi ◽  
Muhammad Zia ur Rehman ◽  
Imran Amjad ◽  
Muhammad Shafique ◽  
...  

Brain- and muscle-triggered exoskeletons have been proposed as a means for motor training after a stroke. With the possibility of performing different movement types with an exoskeleton, it is possible to introduce task variability in training. It is difficult to decode different movement types simultaneously from brain activity, but it may be possible from residual muscle activity that many patients have or quickly regain. This study investigates whether nine different motion classes of the hand and forearm could be decoded from forearm EMG in 15 stroke patients. This study also evaluates the test-retest reliability of a classical, but simple, classifier (linear discriminant analysis) and advanced, but more computationally intensive, classifiers (autoencoders and convolutional neural networks). Moreover, the association between the level of motor impairment and classification accuracy was tested. Three channels of surface EMG were recorded during the following motion classes: Hand Close, Hand Open, Wrist Extension, Wrist Flexion, Supination, Pronation, Lateral Grasp, Pinch Grasp, and Rest. Six repetitions of each motion class were performed on two different days. Hudgins time-domain features were extracted and classified using linear discriminant analysis and autoencoders, and raw EMG was classified with convolutional neural networks. On average, 79 ± 12% and 80 ± 12% (autoencoders) of the movements were correctly classified for days 1 and 2, respectively, with an intraclass correlation coefficient of 0.88. No association was found between the level of motor impairment and classification accuracy (Spearman correlation: 0.24). It was shown that nine motion classes could be decoded from residual EMG, with autoencoders being the best classification approach, and that the results were reliable across days; this may have implications for the development of EMG-controlled exoskeletons for training in the patient’s home.


Sign in / Sign up

Export Citation Format

Share Document