scholarly journals A Path-Based Selection Solution Approach for the Low Carbon Vehicle Routing Problem with a Time-Window Constraint

2020 ◽  
Vol 10 (4) ◽  
pp. 1489 ◽  
Author(s):  
Xianlong Ge ◽  
Xiaobo Ge ◽  
Weixin Wang

Due to the gradual improvement of urban traffic network construction and the increasing number of optional paths between any two points, how to optimize a vehicle travel path in a multi-path road network and then improve the efficiency of urban distribution has become a difficult problem for logistics companies. For this purpose, a mixed-integer mathematical programming model with a time window based on multiple paths for urban distribution in a multi-path environment is established and its exact solution solved using software CPLEX. Additionally, in order to test the application and feasibility of the model, simulation experiments were performed on the four parameters of time, distance, cost, and fuel consumption. Furthermore, using Jingdong (JD), the main urban area in Chongqing, as an example, the experimental results reveal that an algorithm that considers the path selection can significantly improve the efficiency of urban distribution in metropolitan areas with complex road structures.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jianxun Cui ◽  
Shi An ◽  
Meng Zhao

During real-life disasters, that is, earthquakes, floods, terrorist attacks, and other unexpected events, emergency evacuation and rescue are two primary operations that can save the lives and property of the affected population. It is unavoidable that evacuation flow and rescue flow will conflict with each other on the same spatial road network and within the same time window. Therefore, we propose a novel generalized minimum cost flow model to optimize the distribution pattern of these two types of flow on the same network by introducing the conflict cost. The travel time on each link is assumed to be subject to a bureau of public road (BPR) function rather than a fixed cost. Additionally, we integrate contraflow operations into this model to redesign the network shared by those two types of flow. A nonconvex mixed-integer nonlinear programming model with bilinear, fractional, and power components is constructed, and GAMS/BARON is used to solve this programming model. A case study is conducted in the downtown area of Harbin city in China to verify the efficiency of proposed model, and several helpful findings and managerial insights are also presented.


2019 ◽  
Vol 59 (6) ◽  
pp. 1126 ◽  
Author(s):  
S. V. Rodríguez-Sanchez ◽  
L. M. Pla-Aragones ◽  
R. De Castro

Modern pig production in a vertically integrated company is a highly specialised and industrialised activity, requiring increasingly complex and critical decision-making. The present paper focuses on the decisions made on the pig-grower farms operating on an all-in–all-out management policy at the last stage of pig production. Based on a mixed-integer linear-programming model, an assessment for specific parameters to support marketing decisions on farms without individual weight control is made. The analysis of several key factors affecting the optimal marketing policy, such as transportation cost, when and how many pigs to deliver to the abattoir and weight homogeneity of the batch, served to gain insight into marketing decisions. The results confirmed that not just the feeding program, but also the grading price system, transportation and batch homogeneity have an enormous impact on the optimal marketing policy of fattening farms in a vertically integrated company. In addition, within the range of conditions considered, a time window of 4 weeks was deemed as optimal for delivering animals to the abattoir and the subsequent revenue was 15% higher than with traditional marketing rules.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhenfeng Jiang ◽  
Dongxu Chen ◽  
Zhongzhen Yang

A Synchronous Optimization for Multiship Shuttle Tanker Fleet Design and Scheduling is solved in the context of development of floating production storage and offloading device (FPSO). In this paper, the shuttle tanker fleet scheduling problem is considered as a vehicle routing problem with hard time window constraints. A mixed integer programming model aiming at minimizing total transportation cost is proposed to model this problem. To solve this model, we propose an exact algorithm based on the column generation and perform numerical experiments. The experiment results show that the proposed model and algorithm can effectively solve the problem.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Yuan Jiang ◽  
Baofeng Sun ◽  
Gendao Li ◽  
Zhibin Lin ◽  
Changxu Zheng ◽  
...  

Highway passenger transport based express parcel service (HPTB-EPS) is an emerging business that uses unutilised room of coach trunk to ship parcels between major cities. While it is reaping more and more express market, the managers are facing difficult decisions to design the service network. This paper investigates the HPTB-EPS network design problem and analyses the time-space characteristics of such network. A mixed-integer programming model is formulated integrating the service decision, frequency, and network flow distribution. To solve the model, a decomposition-based heuristic algorithm is designed by decomposing the problem as three steps: construction of service network, service path selection, and distribution of network flow. Numerical experiment using real data from our partner company demonstrates the effectiveness of our model and algorithm. We found that our solution could reduce the total cost by up to 16.3% compared to the carrier’s solution. The sensitivity analysis demonstrates the robustness and flexibility of the solutions of the model.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Guangcan Xu ◽  
Maozeng Xu ◽  
Yong Wang ◽  
Yong Liu ◽  
Qiguang Lv

Energy supply is an important system that affects the overall efficiency of urban transportation. To improve the system operational efficiency and reduce costs, we formulate and solve a collaborative multidepot petrol station replenishment problem with multicompartments and time window assignment by establishing a mixed-integer linear programming model. The hybrid heuristic algorithm composed of genetic algorithm and particle swarm optimization is used as a solution, and then the Shapley value method is applied to analyze the profit allocation of each petrol depot under different coalitions. The optimal membership sequence of the cooperation is determined according to the strict monotone path. To analyze and verify the effectiveness of the proposed method, a regional petrol supply network in Chongqing city in China is investigated. Through cooperation between petrol depots in the supply network, the utilization of customer clustering, time window coordination, and distribution truck sharing can significantly reduce the total operation costs and improve the efficiency of urban transportation energy supply. This approach can provide theoretical support for relevant government departments and enterprises to make optimal decisions. The implementation of the joint distribution of energy can promote the sustainable development of urban transportation.


2019 ◽  
Vol 11 (16) ◽  
pp. 4387 ◽  
Author(s):  
Lin ◽  
Zhang ◽  
Wang ◽  
Yang ◽  
Shi ◽  
...  

The increasing demand for urban distribution increases the number of transportation vehicles which intensifies the congestion of urban traffic and leads to a lot of carbon emissions. This paper focuses on carbon emission reduction in urban distribution, taking perishable foods as the object. It carries out optimization analysis of urban distribution routes to explore the impact of low carbon policy on urban distribution routes planning. On the basis of analysis of the cost components and corresponding constraints of urban distribution, two optimization models of urban distribution routes with and without carbon emissions cost are constructed. Fuel quantity related to cost and carbon emissions in the model is calculated based on traffic speed, vehicle fuel quantity and passable time period of distribution. Then an improved algorithm which combines genetic algorithm and tabu search algorithm is designed to solve models. Moreover, an analysis of the influence of carbon tax price is also carried out. It is concluded that in the process of urban distribution based on the actual network information, path optimization considering the low carbon factor can effectively reduce the distribution process of CO2, and reduce the total cost of the enterprise and society, thus achieving greater social benefits at a lower cost. In addition, the government can encourage low-carbon distribution by rationally adjusting the price of carbon tax to achieve a higher social benefit.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Huizhi Ren ◽  
Shenshen Sun

A special parallel production lines scheduling problem is studied in this paper. Considering the time window and technical constraints, a mixed integer linear programming (MILP) model is formulated for the problem. A few valid inequalities are deduced and a hybrid mixed integer linear programming/constraint programming (MILP/CP) decomposition strategy is introduced. Based on them, a hybrid integer programming/genetic algorithm (IP/GA) approach is proposed to solve the problem. At last, the numerical experiments demonstrate that the proposed solution approach is effective and efficient.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ang Yang ◽  
Yu Cao ◽  
Kang Chen ◽  
Qingcheng Zeng ◽  
Zigen Chen

The quantity of electrical coal transported through the tramp shipping network is increasing due to the high demands. This trend has increased the scheduling difficulty combined with the underdevelopment of the private thermal power plant port. The high coal consumption and low port storage capacity requires the scheduling of the tramp ship to be on a strict time window to ensure the continuous operation of the thermal power plant. The low port unloading capacity often leads to the port congestion and delay of the unloading operation. This paper develops a mixed-integer-programming model for the optimization of the tramp ship scheduling to reduce the total operation cost, including the transportation cost and the unloading waiting cost, and the branch-and-price algorithm is adopted to solve this large-scale model. The model and algorithm are tested with historical operation data from the thermal power plant in the southern coastal areas of China. The optimized scheme significantly reduces the total operation cost by reducing the unloading waiting time and the number of active vessels in certain periods. The results also demonstrate the algorithm improvement in the aspects of the optimization quality and efficiency comparing with the heuristic solution.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Shan Lu ◽  
Hongye Su ◽  
Lian Xiao ◽  
Li Zhu

This paper tackles the challenges for a production planning problem with linguistic preference on the objectives in an uncertain multiproduct multistage manufacturing environment. The uncertain sources are modelled by fuzzy sets and involve those induced by both the epistemic factors of process and external factors from customers and suppliers. A fuzzy multiobjective mixed integer programming model with different objective priorities is proposed to address the problem which attempts to simultaneously minimize the relevant operations cost and maximize the average safety stock holding level and the average service level. The epistemic and external uncertainty is simultaneously considered and formulated as flexible constraints. By defining the priority levels, a two-phase fuzzy optimization approach is used to manage the preference extent and convert the original model into an auxiliary crisp one. Then a novel interactive solution approach is proposed to solve this problem. An industrial case originating from a steel rolling plant is applied to implement the proposed approach. The numerical results demonstrate the efficiency and feasibility to handle the linguistic preference and provide a compromised solution in an uncertain environment.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yonggang Chang ◽  
Huizhi Ren ◽  
Shijie Wang

This paper addresses a special truck scheduling problem in the open-pit mine with different transport revenue consideration. A mixed integer programming model is formulated to define the problem clearly and a few valid inequalities are deduced to strengthen the model. Some properties and two upper bounds of the problem are proposed. Based on these inequalities, properties, and upper bounds, a heuristic solution approach with two improvement strategies is proposed to resolve the problem and the numerical experiment demonstrates that the proposed solution approach is effective and efficient.


Sign in / Sign up

Export Citation Format

Share Document