scholarly journals Analysis of Movement Law and Influencing Factors of Hill-Drop Fertilizer Based on SPH Algorithm

2020 ◽  
Vol 10 (5) ◽  
pp. 1643 ◽  
Author(s):  
Jin Gao ◽  
Junxiong Zhang ◽  
Fan Zhang ◽  
Zeyu Hou ◽  
Yihao Zhai ◽  
...  

Studying the movement law and influencing factors of fertilizer in soil and controlling fertilizer distribution can improve the quality of fertilization, which is of great significance for promoting crop yield. In this paper, a 3D simulation model of the hill-drop fertilizer device and soil was established by the Smoothed Particle Hydrodynamics (SPH) algorithm, and the simulation model was modified using the Mohr–Coulomb criterion, and fertilizer movement in the soil under the disturbance of the cover was simulated and analyzed by the SPH algorithm. Orthogonal simulation experiments and the range analysis method were used to study the overall displacement and deformation of fertilizer, and the key factors affecting fertilizer movement were analyzed. After fertilization, the soil was layered with a soil sampler, and a digital image processing method was used to detect the fertilizer distribution in different soil depths; then, the fertilizer movement was inferred. The results of the field experiment showed that the trend of fertilizer movement was consistent with the results of the simulation experiment, which provides a reference for studying the movement and distribution of fertilizer in soil.

Author(s):  
Amin Rahmat ◽  
Hossein Nasiri ◽  
Marjan Goodarzi ◽  
Ehsan Heidaryan

Purpose This paper aims to introduce a numerical investigation of aquatic locomotion using the smoothed particle hydrodynamics (SPH) method. Design/methodology/approach To model this problem, a simple improved SPH algorithm is presented that can handle complex geometries using updatable dummy particles. The computational code is validated by solving the flow over a two-dimensional cylinder and comparing its drag coefficient for two different Reynolds numbers with those in the literature. Findings Additionally, the drag coefficient and vortices created behind the aquatic swimmer are quantitatively and qualitatively compared with available credential data. Afterward, the flow over an aquatic swimmer is simulated for a wide range of Reynolds and Strouhal numbers, as well as for the amplitude envelope. Moreover, comprehensive discussions on drag coefficient and vorticity patterns behind the aquatic are made. Originality/value It is found that by increasing both Reynolds and Strouhal numbers separately, the anguilliform motion approaches the self-propulsion condition; however, the vortices show different pattern with these increments.


2019 ◽  
Vol 95 ◽  
pp. 02011
Author(s):  
Anisa Wulandari ◽  
R.R Dwinanti Rika ◽  
Jessica Sjah ◽  
Herr Soeryantono

Scouring Phenomenon directly occurs on materials due to the motion of water flow and water borne sediments that researchers in the world continue to investigate. Scouring are then continuously developed in Computational Fluid Dynamics (CFD) to be able to estimate scouring effects by analyzing interaction between fluid and solid. Water and solid interaction can be researched by realizing three dimensional numerical modeling (3D) using Smoothed Particle Hydrodynamics Method which is modeling and visualizing fluid behavior with a Lagrangian approach in particle scale (micro scale), a more particle approach realistic than the grid approach. Using this method, the results of each particle can be reviewed either by their property values or visually so that the results are obtained more representatives. One of the factors affecting fluid-solid modeling is spacing ratio between solid particle and fluid particle. To obtain the correct physical results, it is required to consider the influence of spacing ratio and the value of Stiffness Coefficient (Ks) needed.


Author(s):  
M. H. Farahani ◽  
N. Amanifard ◽  
H. Asadi ◽  
M. Mahnama

Simulation of the fluid-structure interaction (FSI) and free surface flows includes an area of extremely challenging problems in the computational mechanics community. In this paper, a newly proposed SPH algorithm is employed to simulate FSI problems with complex free surface flows. In this way, fluid and elastic structure continua are coupled using a monolithic but explicit numerical scheme. The proposed method is similar to so-called SPH projection method and consists of three steps. The first two steps play the role of prediction, while in the third step a Poisson equation is used for both fluid and structure to impose incompressibility constraint.


Author(s):  
Nobuki Yamagata ◽  
Yuzuru Sakai ◽  
Pedro Marcal

Smoothed Particle Hydrodynamics (SPH) was invented by Lucy[1], Monaghan and Gingold [2] for gas dynamics problems in astrophysics and extended to treat solid continua in this decade[3]]. The SPH technique uses no underlying grid — it is a pure Lagrangian particle method. The absence of a mesh and the calculation of interactions among particles based on their separation alone that large deformations can be computed without difficulty. It is for this reason that SPH has the potential to be a valuable computational tool. In this paper we have been using the SPH algorithm to compute the structural analysis of the mobile phones without mesh data. Using the visualization software MPAVE the particle distributions for the mobile phone could be easily produced in 3 dimensions and the elastic-plastic analysis and the fracture analysis have been performed effectively. The results show the possibility for practical use of a particle method to 3 dimensional structural analysis of the usual industrial products.


2019 ◽  
Vol 628 ◽  
pp. A82
Author(s):  
L. D. Pinto ◽  
R. Capuzzo-Dolcetta ◽  
G. Magni

The study of the stability of massive gaseous disks around a star in a nonisolated context is a difficult task and becomes even more complicated for disks that are hosted by binary systems. The role of self-gravity is thought to be significant when the ratio of the disk-to-star mass is non-negligible. To solve these problems, we implemented, tested, and applied our own smoothed particle hydrodynamics (SPH) algorithm. The code (named GaSPH) passed various quality tests and shows good performances, and it can therefore be reliably applied to the study of disks around stars when self-gravity needs to be accounted for. We here introduce and describe the algorithm, including some performance and stability tests. This paper is the first part of a series of studies in which self-gravitating disks in binary systems are let evolve in larger environments such as open clusters.


2008 ◽  
Vol 96 (6) ◽  
pp. 263-268 ◽  
Author(s):  
E. Mounif ◽  
V. Bellenger ◽  
A. Ammar ◽  
R. Ata ◽  
P. Mazabraud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document