3d simulation model
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 13 (23) ◽  
pp. 13363
Author(s):  
Neda M. Sokolović ◽  
Milica Petrović ◽  
Ana Kontić ◽  
Suzana Koprivica ◽  
Nenad Šekularac

The importance of masonry arch bridges as a traffic network element calls for a thorough analysis focused on both structural stability and loading capacity of these historical structures, considering the usage of these bridges in contemporary traffic conditions. This paper focuses on the analysis of longitudinal cracks in a single span masonry arch bridge to evaluate its influence on structural behaviour of the system. As longitudinal cracks do not necessarily present an inevitable collapse mechanism, analysis of the causes is crucial for evaluating the serviceability and functionality of the bridge investigated. The methodology is based on the following: literature review, observation of the stone bridge in Ivanjica, geological testing of the site, geophysical testing of the bridge, laboratory testing of mechanical characteristics of stone used for the bridge construction and biological analysis of the samples of implemented materials on the bridge. Finite element analysis of the bridge was conducted to define the causes of the longitudinal cracks. The 3D simulation model was based on the data collected through observation and experimental analysis. This paper provides extensive research on a single span masonry bridge, examining how different deterioration mechanisms, in conjunction, can lead to the appearance of cracks in masonry arch bridges and provide remedial measures accordingly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lijuan Zhao ◽  
Meichen Zhang ◽  
Xin Jin

AbstractThe high-precision 3D simulation model for geomechanics of a complex coal seam is the necessary premise for the research on intelligent shearer and unmanned mining. However, at present, a simulation model for geomechanics of a complex coal seam generally has the problems of simplifying complex geological structures and low accuracy for structures. In order to meet the needs of a coal seam simulation model in the mining process of an intelligent shearer, it is necessary to optimize the simplified model of a coal seam. Therefore, based on a 3D simplified simulation model constructed with discrete element technology, the complex coal seam application plug-in was compiled with the help of an Application Program Interface. Moreover, according to the geological characteristics, new attributes were added to the structures to complete the construction of the model of a complex coal seam. Finally, the model was verified with laboratory experiments. The results showed that the high-precision 3D simulation model for geomechanics of a complex coal seam effectively improved the accuracy of the modeling. The real-time transmission and the real-time sharing of multi-source data were realized by considering the 3D simulation model for geomechanics of a complex coal seam as the core. Additionally, the purpose of the real-time sensing of the coal cutting state was achieved in order to lay the foundation for the realization of unmanned mining.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shuang Lai ◽  
Jintao Zhang ◽  
Yaxuan Yan ◽  
Huahua Yu

Electroadhesion is an adhesion mechanism applying high voltage to generate adhesive force. The electroadhesion system can generate and maintain adhesive force on almost any object, solving the challenge of handling irregular and rough surface objects as well as fragile objects. The electroadhesive pad is a key component of the electroadhesion system for interacting with the target object. By optimizing the design of the electroadhesive pad, the electroadhesion system provides greater adhesive force and achieves better adhesion. In this study, a multiparameter theoretical model including the dimensional parameters of the electroadhesive pad has been developed and an optimization design strategy for specific applications has been proposed. By considering both the key parameters influencing the electroadhesive force and the practical constraints of equipment and materials, this strategy allows the optimization design methods of electroadhesive pads to be further extended to applications. The influence of each parameter on the optimization results has been evaluated by calculating and comparing the optimized values under different conditions, and it has been demonstrated that the size of the pad also has an effect on the optimized values. A 3D simulation model has been established to simulate the effect of electroadhesion, and the accuracy of the optimization results has been verified by comparing the theoretical and simulation results. An application example has been performed and the results have shown that the structure of the electroadhesive pad can be optimized by using this strategy, thus maximizing the generated electroadhesive force and improving the overall performance of the electroadhesion system.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qiang Wu

In recent years, great progress has been made in 3D simulation modeling of instant network communication system, such as the application of virtual reality technology and 3D virtual animation online modeling technology. Facing the increasing demand of different industries, how to build an instant network communication system for 3D virtual animation has become a research hotspot. On this basis, the construction method of fast instant network communication system based on convolutional neural network and fusion morphological 3D simulation model is studied. This paper analyzes the research status of instant network communication system. The experiment optimizes and improves the shortcomings of the current research hotspot of virtual animation instant network communication system and takes the morphological 3D simulation model fusion as the core for in-depth optimization. Finally, the experimental results show that the fusion morphological 3D simulation model can reconstruct the standard 3D virtual animation model according to different needs and can quickly model the optimization strategy according to the local differences of different animations. The response accuracy of the network communication system reaches 97.7%.


2021 ◽  
Vol 36 (7) ◽  
pp. 901-907
Author(s):  
Yun Jiang ◽  
Yuan Ye ◽  
Daotong Li ◽  
Zhaoyu Huang ◽  
Chao Wang ◽  
...  

A W-band PIN diode single pole double throw (SPDT) switch with low insertion loss (IL) was successfully developed using a hybrid integration circuit (HIC) of microstrip and coplanar waveguide (CPW) in this paper. In order to achieve low loss of the SPDT switch, the beam-lead PIN diode 3D simulation model was accurately established in Ansys High Frequency Structure Simulator (HFSS) and the W-band H-plane waveguide-microstrip transition was realized based on the principle of the magnetic field coupling. The key of the proposed method is to design the H-plane waveguide-microstrip transition, it not only realizes the low IL of the SPDT switch, but also the direct current (DC) bias of the PIN diode can be better grounded. In order to validate the proposed design method, a W-band PIN diode SPDT switch is fabricated and measured. The measurement results show that the IL of the SPDT switch is less than 2 dB in the frequency range of 85 to 95 GHz, while the isolation of the SPDT switch is greater than 15 dB in the frequency range of 89.5 to 94 GHz. In the frequency range of 92 to 93 GHz, the IL of the SPDT switch is less than 1.65 dB, and its isolation is higher than 22 dB. Switch rise time and switch fall time of the SPDT switch are smaller than 29ns and 19ns, respectively. Good agreement between the simulations and measurements validates the design method.


Author(s):  
A. K. Smith ◽  
S. Dragićević

Abstract. The recent advancement of simulation modeling to represent phenomena in three spatial dimensions (3D) requires the development of techniques that will allow comparison of the modeling outputs in multiple dimensions. However, many existing techniques for map comparison in two spatial dimensions (2D) have been developed from non-spatial method such Cohen’s Kappa. These techniques are not yet fully extended to deal with 3D map data or simulation outcomes. Therefore, the main objective of this study is to investigate the use of the 3D Accuracy and 3D Cohen’s Kappa coefficients to compare simulation model outputs in 3D. An existing agent-based model (ABM) of forest-fire smoke propagation was used to generate multiple scenarios for the purpose of comparing 3D simulation outputs. The results for 3D Accuracy and 3D Cohen’s Kappa produces meaningful values when comparing several scenarios with different 3D ABM outputs. This study emphasizes the need for the development of more advanced simulation output comparison techniques that operate in 3D and potentially over time (4D).


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 242
Author(s):  
Christoph Schünemann ◽  
David Schiela ◽  
Regine Ortlepp

Can building performance simulation reproduce measured summertime indoor conditions of a multi-residential building in good conformity? This question is answered by calibrating simulated to monitored room temperatures of several rooms of a multi-residential building for an entire summer in two process steps. First, we did a calibration for several days without the residents being present to validate the building physics of the 3D simulation model. Second, the simulations were calibrated for the entire summer period, including the residents’ impact on evolving room temperature and overheating. As a result, a high degree of conformity between simulation and measurement could be achieved for all monitored rooms. The credibility of our results was secured by a detailed sensitivity analysis under varying meteorological conditions, shading situations, and window ventilation or room use in the simulation model. For top floor dwellings, a high overheating intensity was evoked by a combination of insufficient use of night-time window ventilation and non-heat-adapted residential behavior in combination with high solar gains and low heat storage capacities. Finally, the overall findings were merged into a process guideline to describe how a step-by-step calibration of residential building simulation models can be done. This guideline is intended to be a starting point for future discussions about the validity of the simplified boundary conditions which are often used in present-day standard overheating assessment.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 238
Author(s):  
Felipe de Miguel-Díez ◽  
Eduardo Tolosana-Esteban ◽  
Thomas Purfürst ◽  
Tobias Cremer

The influence that parameters crookedness and taper have on the stack volume was analyzed by using a 3D-simulation model in this study. To do so, log length, diameters at the midpoint and both ends, crookedness, bark thickness, taper and ovality were measured in 1000 logs of Scots pine. From this database, several data sets with different proportions of crooked and tapered logs in stack as well as with different degrees of taper and crookedness were created and taken as basis to simulate the stacks and carry out the analysis. The results show how the variation of these parameters influences the stack volume and provide their volume variation grades. These rates of variation were compared with measurement guidelines of some countries and previous research works. In conclusion, the parameters crookedness and taper influence the stack volume to a considerable extent. Specifically, the stack volume is increased as the crookedness degree or the proportion of crooked logs increases. In contrast, the stack volume is reduced as the taper degree or the proportion of tapered logs increases. Furthermore, the results demonstrate the capability of this simulation model to provide accurate results which can serve as a basis for future studies.


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1016
Author(s):  
Iftekhar Khan ◽  
Stefania Castelletto ◽  
Gary Rosengarten

Traditional tracking devices for solar energy applications have several disadvantages, such as bulky mechanical structure, large wind loads, and ease of misalignment. This study aims to design a flat, thin, and adaptive beam steering device to eliminate these drawbacks. A proof of concept device was fabricated to demonstrate this design. The novelty of the proof of concept device is the hexagonal structure of the electrowetting cell design. The hexagonal cell was dosed with two immiscible liquids with different refractive indices. The hypothesis of this design is that by deforming the liquid shape with the application of voltage, light can be steered and concentrated for solar energy applications. A maximum contact angle change of 44° was observed with the application of 26 V to one of the electrodes of the hexagonal cell. The device demonstrated a 4.5° change of laser beam path with only a 0.2 refractive index difference of the liquids. The 3D simulation model developed in this study shows that a tilted and flat interface can be achieved using higher dielectric constant dielectric materials. The device can facilitate the planer steering and concentration of sunlight for rooftop applications without moving mechanical parts.


Sign in / Sign up

Export Citation Format

Share Document