Breast Ultrasound Image Processing

Author(s):  
Strivathsav Ashwin Ramamoorthy ◽  
Varun P. Gopi

Breast cancer is a serious disease among women, and its early detection is very crucial for the treatment of cancer. To assist radiologists who manually delineate the tumour from the ultrasound image an automatic computerized method of detection called CAD (computer-aided diagnosis) is developed to provide valuable inputs for radiologists. The CAD systems is divided into many branches like pre-processing, segmentation, feature extraction, and classification. This chapter solely focuses on the first two branches of the CAD system the pre-processing and segmentation. Ultrasound images acquired depends on the operator expertise and is found to be of low contrast and fuzzy in nature. For the pre-processing branch, a contrast enhancement algorithm based on fuzzy logic is implemented which could help in the efficient delineation of the tumour from ultrasound image.

2018 ◽  
Vol 4 (2) ◽  
pp. 27-36
Author(s):  
Yuli Triyani

Breast cancer is the most commonly diagnosed cancer with the highest prevalence, incidence, and mortality rate for females in Indonesia and worldwide. Ultrasonography is a recommended modality for breast cancer, because it is comfortable, radiation free and it can be widely used. However, ultrasound images often occur in quality degradation caused by speckle noise that appears during image acquisition. It causes difficulty for radiologists or Computer Aided Diagnosis (CAD) systems to diagnose these images. Some techniques are proposed for reducing the speckle noise. This journal aims to compare the performance of 14 noise reduction techniques in breast ultrasound images. Quantitative testing was carried out on 58 breast ultrasound images and 3 artificial breast ultrasound image. The quantitative parameters are used include texture analysis (Mean, Variant, skewness, kurtosis, contrast and entropy) and evaluation of image quality (MSE, RMSE, SNR, SSIM, Structural content and Maximum Difference). The qualitative testing was also carried out with the assessment of 3 radiology specialists on 3 samples of each reduction technique. Based on test results, the 3 best performance filters are DsFsrad, DsFamedian dan DsFhmedian. Keywords: Ultrasound, speckle noise, filter


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qianting Ma ◽  
Tieyong Zeng ◽  
Dexing Kong ◽  
Jianwei Zhang

<p style='text-indent:20px;'>Breast ultrasound segmentation is a challenging task in practice due to speckle noise, low contrast and blurry boundaries. Although numerous methods have been developed to solve this problem, most of them can not produce a satisfying result due to uncertainty of the segmented region without specialized domain knowledge. In this paper, we propose a novel breast ultrasound image segmentation method that incorporates weighted area constraints using level set representations. Specifically, we first use speckle reducing anisotropic diffusion filter to suppress speckle noise, and apply the Grabcut on them to provide an initial segmentation result. In order to refine the resulting image mask, we propose a weighted area constraints-based level set formulation (WACLSF) to extract a more accurate tumor boundary. The major contribution of this paper is the introduction of a simple nonlinear constraint for the regularization of probability scores from a classifier, which can speed up the motion of zero level set to move to a desired boundary. Comparisons with other state-of-the-art methods, such as FCN-AlexNet and U-Net, show the advantages of our proposed WACLSF-based strategy in terms of visual view and accuracy.</p>


Diagnostics ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 176 ◽  
Author(s):  
Tomoyuki Fujioka ◽  
Mio Mori ◽  
Kazunori Kubota ◽  
Yuka Kikuchi ◽  
Leona Katsuta ◽  
...  

Deep convolutional generative adversarial networks (DCGANs) are newly developed tools for generating synthesized images. To determine the clinical utility of synthesized images, we generated breast ultrasound images and assessed their quality and clinical value. After retrospectively collecting 528 images of 144 benign masses and 529 images of 216 malignant masses in the breasts, synthesized images were generated using a DCGAN with 50, 100, 200, 500, and 1000 epochs. The synthesized (n = 20) and original (n = 40) images were evaluated by two radiologists, who scored them for overall quality, definition of anatomic structures, and visualization of the masses on a five-point scale. They also scored the possibility of images being original. Although there was no significant difference between the images synthesized with 1000 and 500 epochs, the latter were evaluated as being of higher quality than all other images. Moreover, 2.5%, 0%, 12.5%, 37.5%, and 22.5% of the images synthesized with 50, 100, 200, 500, and 1000 epochs, respectively, and 14% of the original images were indistinguishable from one another. Interobserver agreement was very good (|r| = 0.708–0.825, p < 0.001). Therefore, DCGAN can generate high-quality and realistic synthesized breast ultrasound images that are indistinguishable from the original images.


2019 ◽  
Vol 64 (23) ◽  
pp. 235013 ◽  
Author(s):  
Hiroki Tanaka ◽  
Shih-Wei Chiu ◽  
Takanori Watanabe ◽  
Setsuko Kaoku ◽  
Takuhiro Yamaguchi

2020 ◽  
Vol 10 (5) ◽  
pp. 1830
Author(s):  
Yi-Wei Chang ◽  
Yun-Ru Chen ◽  
Chien-Chuan Ko ◽  
Wei-Yang Lin ◽  
Keng-Pei Lin

The breast ultrasound is not only one of major devices for breast tissue imaging, but also one of important methods in breast tumor screening. It is non-radiative, non-invasive, harmless, simple, and low cost screening. The American College of Radiology (ACR) proposed the Breast Imaging Reporting and Data System (BI-RADS) to evaluate far more breast lesion severities compared to traditional diagnoses according to five-criterion categories of masses composition described as follows: shape, orientation, margin, echo pattern, and posterior features. However, there exist some problems, such as intensity differences and different resolutions in image acquisition among different types of ultrasound imaging modalities so that clinicians cannot always identify accurately the BI-RADS categories or disease severities. To this end, this article adopted three different brands of ultrasound scanners to fetch breast images for our experimental samples. The breast lesion was detected on the original image using preprocessing, image segmentation, etc. The breast tumor’s severity was evaluated on the features of the breast lesion via our proposed classifiers according to the BI-RADS standard rather than traditional assessment on the severity; i.e., merely using benign or malignant. In this work, we mainly focused on the BI-RADS categories 2–5 after the stage of segmentation as a result of the clinical practice. Moreover, several features related to lesion severities based on the selected BI-RADS categories were introduced into three machine learning classifiers, including a Support Vector Machine (SVM), Random Forest (RF), and Convolution Neural Network (CNN) combined with feature selection to develop a multi-class assessment of breast tumor severity based on BI-RADS. Experimental results show that the proposed CAD system based on BI-RADS can obtain the identification accuracies with SVM, RF, and CNN reaching 80.00%, 77.78%, and 85.42%, respectively. We also validated the performance and adaptability of the classification using different ultrasound scanners. Results also indicate that the evaluations of F-score based on CNN can obtain measures higher than 75% (i.e., prominent adaptability) when samples were tested on various BI-RADS categories.


2020 ◽  
pp. 1-16
Author(s):  
Ling Zhang ◽  
Yan Zhuang ◽  
Zhan Hua ◽  
Lin Han ◽  
Cheng Li ◽  
...  

BACKGROUND: Thyroid ultrasonography is widely used to diagnose thyroid nodules in clinics. Automatic localization of nodules can promote the development of intelligent thyroid diagnosis and reduce workload of radiologists. However, besides the ultrasound image has low contrast and high noise, the thyroid nodules are diverse in shape and vary greatly in size. Thus, thyroid nodule detection in ultrasound images is still a challenging task. OBJECTIVE: This study proposes an automatic detection algorithm to locate nodules in B ultrasound images and Doppler ultrasound images. This method can be used to screen thyroid nodules and provide a basis for subsequent automatic segmentation and intelligent diagnosis. METHODS: We develop and optimize an improved YOLOV3 model for detecting thyroid nodules in ultrasound images with B-mode and Doppler mode. Improvements include (1) using the high-resolution network (HRNet) as the basic network for gradually extracting high-level semantic features to reduce the missed detection and misdetection, (2) optimizing the loss function for single target detection like nodules, and (3) obtaining the anchor boxes by clustering the candidate frames of real nodules in the dataset. RESULTS: The experimental results of applying to 8000 clinical ultrasound images show that the new method developed and tested in this study can effectively detect thyroid nodules. The method achieves 94.53% mean precision and 95.00% mean recall. CONCLUTIONS: The study demonstrates a new automated method that enables to achieve high detection accuracy and effectively locate thyroid nodules in various ultrasound images without any user interaction, which indicates its potential clinical application value for the thyroid nodule screening.


2019 ◽  
Vol 8 (4) ◽  
pp. 12261-12273

Background: Gastrointestinal (GI) tract abnormalities are most common across the world, and it is a significant threat to the health of human beings. Capsule endoscopy is a non-sedative, non-invasive and patient-friendly procedure for the diagnosis of GI tract abnormalities. However, it is very time consuming and tiresome task for physicians due to length of endoscopy videos. Thus computer-aided diagnosis (CAD) system is a must. Methods: This systematic review aims to investigate state-of-the-art CAD systems for automatic abnormality detection in capsule endoscopy by examining publications from scientific databases namely IEEE Xplore, Science Direct, Springer, and Scopus. Results: Based on defined search criteria and applied inclusion and exclusion criteria, 44 articles are included out of 187. This study presents the current status and analysis of CAD systems for capsule endoscopy. Conclusion: Publicly available larger dataset and a deep learning based CAD system may help to improve the efficiency of automated abnormality detection in capsule endoscopy.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1565
Author(s):  
Kailuo Yu ◽  
Sheng Chen ◽  
Yanghuai Chen

Over the past few years, researchers have demonstrated the possibilities to use the Computer-Aided Diagnosis (CAD) to provide a preliminary diagnosis. Recently, it is also becoming increasingly common for doctors and computer practitioners to collaborate on developing CAD. Since the early diagnosis of breast cancer is the most critical step, a precise segmentation of breast tumor with accurate edge and shape is vital for accurate diagnoses and reduction in the patients’ pain. In view of the deficient accuracy of existing method, we proposed a novel method based on U-Net to improve the tumor segmentation accuracy in breast ultrasound images. First, Res Path was introduced into the U-Net to reduce the difference between the feature maps of the encoder and decoder. Then, a new connection, dense block from the input of the feature maps in the encoding-to-decoding section, was added to reduce the feature information loss and alleviate the vanishing gradient problem. A breast ultrasound database, which contains 538 tumor images, from Xinhua Hospital in Shanghai and marked by two professional doctors was used to train and test models. We, using ten-fold cross-validation method, compared the U-Net, U-Net with Res Path, and the proposed method to verify the improvements. The results demonstrated an overall improvement by the proposed approach when compared with the other in terms of true-positive rate, false-positive rate, Hausdorff distance indices, Jaccard similarity, and Dice coefficients.


2021 ◽  
Author(s):  
Omid Talakoub

One of the most important areas of biomedical engineering is medical imaging. Fully automated schemes are currently being explored as Computer-Aided Diagnosis (CAD) systems to provide a second opinion to medical professionals; of these systems, abnormal region detector in medical images is one of the most critical CAD systems in development. The primary motivation in using these systems is due to the fact that reading an enormous number of images is a time-consuming task for the radiologist. This task can be sped up by using a CAD system which highlights abnormal regions of interest. Low false positive rates and high sensitivity are essential requirement[s] of such a system. The initial requirement of processing any organ is an accurate segmentation of the target of interest in the images. A segmentation method based on the wavelet transformation is proposed which accurately extracts lung regions in the thoracic CT images. After this step, an Aritifical Intelligence system, known as Least Squares Support Vector Machine (LS-SVM), is employed to classify nodules within the regions of interest. It is a well known fact that the lung nodules, except the pleural nodules, are mostly spherical structures whereas other structures including blood vessels are shaped as other structures such as tubular. Therfore, an enhancment filter is developed in which spherical structures are accentuated. Processing three different real databases revealed that the proposed system has reached the objective of a CAD system to provide reliable opinion for the doctors in the diagnosis fashion.


2019 ◽  
Vol 9 (4) ◽  
pp. 186-193
Author(s):  
Lei Xu ◽  
Junling Gao ◽  
Quan Wang ◽  
Jichao Yin ◽  
Pengfei Yu ◽  
...  

Background: Computer-aided diagnosis (CAD) systems are being applied to the ultrasonographic diagnosis of malignant thyroid nodules, but it remains controversial whether the systems add any accuracy for radiologists. Objective: To determine the accuracy of CAD systems in diagnosing malignant thyroid nodules. Methods: PubMed, EMBASE, and the Cochrane Library were searched for studies on the diagnostic performance of CAD systems. The diagnostic performance was assessed by pooled sensitivity and specificity, and their accuracy was compared with that of radiologists. The present systematic review was registered in PROSPERO (CRD42019134460). Results: Nineteen studies with 4,781 thyroid nodules were included. Both the classic machine learning- and the deep learning-based CAD system had good performance in diagnosing malignant thyroid nodules (classic machine learning: sensitivity 0.86 [95% CI 0.79–0.92], specificity 0.85 [95% CI 0.77–0.91], diagnostic odds ratio (DOR) 37.41 [95% CI 24.91–56.20]; deep learning: sensitivity 0.89 [95% CI 0.81–0.93], specificity 0.84 [95% CI 0.75–0.90], DOR 40.87 [95% CI 18.13–92.13]). The diagnostic performance of the deep learning-based CAD system was comparable to that of the radiologists (sensitivity 0.87 [95% CI 0.78–0.93] vs. 0.87 [95% CI 0.85–0.89], specificity 0.85 [95% CI 0.76–0.91] vs. 0.87 [95% CI 0.81–0.91], DOR 40.12 [95% CI 15.58–103.33] vs. DOR 44.88 [95% CI 30.71–65.57]). Conclusions: The CAD systems demonstrated good performance in diagnosing malignant thyroid nodules. However, experienced radiologists may still have an advantage over CAD systems during real-time diagnosis.


Sign in / Sign up

Export Citation Format

Share Document