scholarly journals An Improved Circumferential Fourier Fit (CFF) Method for Blade Tip Timing Measurements

2020 ◽  
Vol 10 (11) ◽  
pp. 3675
Author(s):  
Zhibo Liu ◽  
Fajie Duan ◽  
Guangyue Niu ◽  
Ling Ma ◽  
Jiajia Jiang ◽  
...  

Rotating blade vibration measurements are very important for any turbomachinery research and development program. The blade tip timing (BTT) technique uses the time of arrival (ToA) of the blade tip passing the casing mounted probes to give the blade vibration. As a non-contact technique, BTT is necessary for rotating blade vibration measurements. The higher accuracy of amplitude and vibration frequency identification has been pursued since the development of BTT. An improved circumferential Fourier fit (ICFF) method is proposed. In this method, the ToA is not only dependent on the rotating speed and monitoring position, but also on blade vibration. Compared with the traditional circumferential Fourier fit (TCFF) method, this improvement is more consistent with reality. A 12-blade assembly simulator and experimental data were used to evaluate the ICFF performance. The simulated results showed that the ICFF performance is comparable to TCFF in terms of EO identification, except the lower PSR or more number probes that have a more negative effect on ICFF. Besides, the accuracy of amplitude identification is higher for ICFF than TCFF on all test conditions. Meanwhile, the higher accuracy of the reconstruction of ICFF was further verified in all measurement resonance analysis.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Zhongsheng Chen ◽  
Jing He ◽  
Chi Zhan

Blade tip-timing (BTT) is a promising method of online monitoring rotating blade vibrations. Since BTT-based vibration signals are typically undersampled, how to reconstruct characteristic vibrations from BTT signals is a big challenge. Existing reconstruction methods are mainly based on the assumption of constant rotation speeds. However, rotating speed fluctuation is inevitable in many engineering applications. In this case, the BTT sampling process should be nonuniform, which will cause existing reconstruction methods to be unavailable. In order to solve this problem, this paper proposes a new reconstruction method based on nonlinear time transformation (NTT). Firstly, the effects of rotating speed fluctuation on BTT vibration reconstruction are analyzed. Next, the NTT of BTT sampling times under rotating speed fluctuation is presented. Then, two NTT-based reconstruction algorithms are derived for uniform and nonuniform BTT sensor configurations, respectively. Also several evaluation metrics of BTT vibration reconstruction under rotating speed fluctuation are defined. Finally, numerical simulations are done to verify the proposed algorithms. The results testify that the proposed NTT-based reconstruction method can reduce effectively the influence of rotating speed fluctuation and decrease the reconstruction error. In addition, rotating speed fluctuation has more bad effects on the reconstruction method under nonuniform sensor configuration than under uniform sensor configuration. For nonuniform BTT signal reconstruction under rotating speed fluctuation, more attentions should be paid on selecting proper angles between BTT sensors. In summary, the proposed method will benefit for detecting early blade damages by reducing frequency aliasing.


2014 ◽  
Vol 30 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Krzysztof Kaźmierczak ◽  
Radosław Przysowa

Abstract Blade Tip Timing (BTT) is a non-intrusive method to measure blade vibration in turbomachinery. Time of Arrival (TOA) is recorded when a blade is passing a stationary sensor. The measurement data, in form of undersampled (aliased) tip-deflection signal, are difficult to analyze with standard signal processing methods like digital filters or Fourier Transform. Several indirect methods are applied to process TOA sequences, such as reconstruction of aliased spectrum and Least-Squares Fitting to harmonic oscillator model. We used standard sine fitting algorithms provided by IEEE-STD-1057 to estimate blade vibration parameters. Blade-tip displacement was simulated in time domain using SDOF model, sampled by stationary sensors and then processed by the sinefit.m toolkit. We evaluated several configurations of different sensor placement, noise level and number of data. Results of the linear sine fitting, performed with the frequency known a priori, were compared with the non-linear ones. Some of non-linear iterations were not convergent. The algorithms and testing results are aimed to be used in analysis of asynchronous blade vibration.


Author(s):  
L. Andrenelli ◽  
N. Paone ◽  
G. Rossi ◽  
E. P. Tomasini

It is discussed the need for non-intrusive monitoring of rotating blade vibration. The advantages over conventional techniques are outlined. The vibration of a compressor blade has been investigated by strain gages, with particular attention to time evolution of the frequency spectra, at different operating speeds of the machine. These information are fundamental to the correct design of the non-intrusive measurement system. The non-intrusive measurement technique has been presented, with special attention on uncertainty and resolution. The necessary hardware is discussed and the design of an optical sensor is presented.


2016 ◽  
Vol 23 (2) ◽  
pp. 252-271 ◽  
Author(s):  
Hui Ma ◽  
Di Wang ◽  
Xingyu Tai ◽  
Bangchun Wen

A cyclic sector corresponding to blade-disk structure with dovetail connection (1/38 blade-disk) is studied and the finite element (FE) model of this structure is established based on ANSYS software. A revised normal rubbing force model is developed and a pulse force model is established to simulate the local rubbing phenomenon between the blade and elastic casing based on the revised model. The effects of the rubbing under different rotating speeds and penetration depths on the blade vibration response and contact behaviors of dovetail interface are analyzed. The results show that the rubbing will cause amplitude amplification phenomenon when the multiple frequency components are close to the first bending and first torsion natural frequencies. The arch bending of the blade caused by blade-tip rubbing can be identified by evaluating the displacement and stress of the blade in the radial direction ( y-direction). The dynamic stress in the process of rubbing gradually changes from alternation between tension and compression stress to the tension stress with the increasing rotating speed. Maximum contact sliding distance may change dramatically when the rubbing force is greater than the centrifugal force. With the increase of rotating speed, the contact pressure increases under the centrifugal force and its fluctuation under rubbing is smaller at higher rotating speeds.


Author(s):  
Chaofeng Li ◽  
Zengchuang Shen ◽  
Zilin Chen ◽  
Houxin She

The vibration dissipation mechanism of the rotating blade with a dovetail joint is studied in this paper. Dry friction damping plays an indispensable role in the direction of vibration reduction. The vibration level is reduced by consuming the total energy of the turbine blade with the dry friction device on the blade-root in the paper. The mechanism of the vibration reduction is revealed by the variation of the friction force and the energy dissipation ratio of dry friction. In this paper, the flexible blade with a dovetail interface feature is discretized by using the spatial beam element based on the finite element theory. Then the classical Coulomb-spring friction model is introduced to obtain the dry friction model on the contact interfaces of the tenon-mortise structure. What is more, the effects of the system parameters (such as the rotating speed, the friction coefficient, the installation angle of the tenon) and the excitation level on blade damping characteristics are discussed, respectively. The results show that the variation of the system parameters leads to a significant change of damping characteristics of the blade. The variation of the tangential stiffness and the position of the external excitation will affect the nonlinear characteristics and vibration damping characteristics.


Author(s):  
Bruce D. Hockaday

Detection of airfoil time of arrival with optical probes has been evolving since the 1980s. Time of arrival data are used to infer airfoil stresses caused by vibration through a sequence of manipulations. The data conversion begins by converting arrival time to blade position, so blade deflection can be determined from the expected non-vibrating position. Various methods are used in the industry to convert deflection data to frequency, amplitude, and stress, which is beyond the scope of this paper. Regardless of the analytical approach used, producing accurate stress information relies on the precise detection and measurement of time of arrival, which equates to blade position. Recent improvements have been made in time of arrival system accuracy by running faster clocks to increase temporal resolution of the measurement. Greater timing resolution, afforded by clock speed, will have diminishing returns when probe and blade-tip interactions begin producing dominant errors. In the case of optical probes, the blade-tip needs to be treated as a curved reflector in the optical system that is capable of introducing dynamic errors. In engine operation the blade-tip moves axially under the probe from untwist, static deflection, and vibration, causing the light to reflect from different parts of the blade-tip. This relative movement between the probe and blade-tip cause the arrival time to change dynamically. Neglecting the dynamic arrival errors caused by the blade-tip’s optical properties will result in blade deflection-errors that propagate into the stress information. This paper presents a laboratory study that quantifies time of arrival errors due to optical interaction with tip radii. The study reports measured arrival position error as a function of location and optical signal power levels. The work is presented in terms of arrival position, producing information that is independent of rotational speed, and vibratory mode.


Author(s):  
Jie Tian ◽  
Xiaopu Zhang ◽  
Yong Chen ◽  
Peter Russhard ◽  
Hua Ouyang

Abstract Based on the blade vibration theory of turbomachinery and the basic principle of blade timing systems, a sparse reconstruction model is derived for the tip timing signal under an arbitrary sensor circumferential placement distribution. The proposed approach uses the sparsity of the tip timing signal in the frequency domain. The application of compressive sensing in reconstructing the blade tip timing signal and monitoring multi-mode blade vibrations is explored. To improve the reconstruction effect, a number of numerical experiments are conducted to examine the effects of various factors on synchronous and non-synchronous signals. This enables the specific steps involved in the compressive sensing reconstruction of tip timing signals to be determined. The proposed method is then applied to the tip timing data of a 27-blade rotor. The results show that the method accurately identifies the multi-mode blade vibrations at different rotation speeds. The proposed method has the advantages of low dependence on prior information, insensitivity to environmental noise, and simultaneous identification of synchronous and non-synchronous signals. The experimental results validate the effectiveness of the proposed approach in engineering applications.


Author(s):  
B. O. Al-Bedoor ◽  
A. A. Al-Qaisia

This paper presents an analysis of the forced vibration of rotating blade due to torsional excitation. The model analyzed is a multi-modal forced second order ordinary differential equation with multiple harmonically varying coefficients. The method of Harmonic Balance (HB) is employed to find approximate solutions for each of the blade modes in the form of truncated Fourier series. The solutions have shown multi resonance response for the first blade vibration mode. The examination of the determinant of the harmonic balance solution coefficient matrix for stability purposes has shown that the region between the two resonance points is an unstable vibration region. Numerical integration of the equations is conducted at different frequency ratio points and the results are discussed. This solution provides a very critical operation and design guidance for rotating blade with torsional vibration excitation.


Sign in / Sign up

Export Citation Format

Share Document