scholarly journals Flat Cross-Shaped Piezoelectric Rotary Motor

2020 ◽  
Vol 10 (14) ◽  
pp. 5022
Author(s):  
Andrius Čeponis ◽  
Dalius Mažeika ◽  
Piotr Vasiljev

A numerical and experimental investigation of a flat, cross-shaped piezoelectric rotary motor is presented. The design and configuration of the motor allow it to be mounted directly to the printed circuit board or integrated into the other system where mounting space is limited. The design of the motor is based on the cross-shaped stator with 16 piezo ceramic plates, which are glued on it. The rotor is placed at the center of the stator and consists of two hemispheres, a shaft, and a preloading spring. Special clamping of the stator was developed as well. It consists of four V-shaped beam structures that allow it to rigidly clamp the stator with reduced damping effect to vibrations. The operation principle of the motor is based on the first in-plane bending mode of the cross-shaped stator. The motor excitation is performed through four harmonic signals, which have a phase difference of π/2. A numerical investigation of the motor was conducted to optimize the geometrical parameters of the stator and to analyze the displacement characteristics of the contacting point. The prototype of the motor was made, and the electrical, as well as rotation speed characteristics of the motor, were measured. The results of the experimental investigation showed that the motor is able to provide a maximum rotation speed of 972.62 RPM at 200 Vp-p when the preload force of 22.65 mN was applied.

Circuit World ◽  
2013 ◽  
Vol 39 (2) ◽  
pp. 82-94 ◽  
Author(s):  
Xiaohu Zheng ◽  
Zhiqiang Liu ◽  
Qinglong An ◽  
Xibin Wang ◽  
Zongwei Xu ◽  
...  

Mechanika ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 139-147
Author(s):  
Ying Yang ◽  
Andrius Čeponis ◽  
Dalius Mažeika ◽  
Vytautas Jūrėnas

Results of numerical and experimental investigations of a novel inertial piezoelectric rotary type motor based on a low profile stator with trapezoidal waveguides. The proposed motor has a simple design and is well scalable. Moreover, the proposed design of the motor allows mount it on a printed circuit board and use it in a small-size mobile positioning and actuating systems. The structure of the stator is based on a square type hollowed steel frame with four straight trapezoidal waveguides that are used to transfer vibrations of the stator to the rotation of the rotor. Piezo ceramic plates are glued on both sides of the stator. The thickness of the assembled stator is 0.9 mm, while the total area needed for stator mounting does not exceed 625 mm2. The driving of the rotor is based on the stick-slip principle, which is induced by excitation of the second in-plane bending mode of the four bimorph plates applying two saw tooth waveform signals with a phase difference by π. The numerical and experimental investigation was carried out to validate the operation principle of the motor and to measure the mechanical and electrical characteristics. The maximum angular rotation speed of 1304 RPM was achieved at a resonance frequency of 44.81 kHz when a preload of a 7.35mN was applied.


Author(s):  
Yean-Der Kuan ◽  
Chia-Hao Chang

The printed circuit board (PCB)-based direct methanol fuel cell (DMFC) package is a novel manufacturing and assembly process, which is full potential in mass production, and very limited literatures make study on the effects of the related process parameters. The hot press is a necessary and key process to make the PCB package, i.e., the key component of a DMFC, membrane electrode assemblies (MEA), needs to sustain a severe test. In order to minimize the process-induced damage of the MEAs, it is important to make a good control on the process parameters. Therefore, the objective of this paper is to present a methodology to explore a good combination of hot-press parameters. The considered parameters include the compression ratio of the MEA, heating time, heating temperature, and hot pressing pressure acting on the MEA. During the experimental investigation, a series of experiments was made first to discuss the effect of the individual parameter of the hot-press process on the MEA performance, wherein a reasonable range of each process parameter condition was able to be well defined. Moreover, the Taguchi experimental method was adopted to explore the parameter effects on the DMFC performance during the digital packaging process and to determine the best combination of parameter conditions. At the end, a MEA was made a hot press under the best parameter combination, which could verify the result obtained from Taguchi’s experiments. The result is able to be an important reference for the future manufacturing design guideline of PCB-based DMFC package.


2019 ◽  
Vol 2 (2) ◽  
pp. 85-94
Author(s):  
Jitendra Singh ◽  
Shantanu Bhattacharya

Electrochemical micromachining (ECMM) has been mostly carried out in situations demanding precision, complexity in the shapes of final components and in case the surface integrity and performance are independent of the machining process. In this work, the following have been demonstrated: The first part of the work demonstrates the experimental setup for ECMM that is used to fabricate a micro-mixer on a printed circuit board (PCB) substrate by using a single point electrochemical machining tool with a tip diameter—150 µm. The method is able to show a promising route of fabrication where the circuit lines on a PCB substrate can be printed with high yield and processing speeds. The second part of the article points out that machining can be carried out on PCB substrates through electrochemical processes using a single point tool and a minimum feature size of 243 µm can be machined with a fine tolerance of 0.025 µm and roughness = 3.0459 µm~7.2404 µm. The third part of the article reports the geometrical parameters of a relatively complex geometry of a micro-mixer which is arrived at through a COMSOL based simulation platform that is fabricated using the mentioned manufacturing process. The process is further validated through the design of experiments, and fluid flow and mixing behaviour on the fabricated structure is evaluated through an epifluorescence microscope. The advantages that this technique may offer is in terms of achieving an overall low feature size in comparison to micro-milling and avoiding the complexities of lithography-driven processes to produce a process which has a much lower equipment dependency, is environmentally benign in comparison to the lithography driven techniques and is overall low in cost.


2012 ◽  
Vol 426 ◽  
pp. 56-59 ◽  
Author(s):  
Xiang Wang ◽  
Xiao Hu Zheng ◽  
Qing Long An ◽  
Ming Chen

More and more attention is put on the machinability of printed circuit board (PCB) with the increasing demand of PCBs driven by the strong need of the market of the electronic products. In this paper, drill wear and burr size, as two main objects of experimental investigation, have been observed and analyzed in drilling PCB through-holes. The results of the drilling experiment conducted with normal drill and specialized drill, indicate that appropriate chisel edge thinning is in favor of decreasing flank wear of the drill, but has no apparent effect on reducing burr size for PCB through-holes drilling.


Sign in / Sign up

Export Citation Format

Share Document