Experimental Investigation on Drilling PCB Through-Holes

2012 ◽  
Vol 426 ◽  
pp. 56-59 ◽  
Author(s):  
Xiang Wang ◽  
Xiao Hu Zheng ◽  
Qing Long An ◽  
Ming Chen

More and more attention is put on the machinability of printed circuit board (PCB) with the increasing demand of PCBs driven by the strong need of the market of the electronic products. In this paper, drill wear and burr size, as two main objects of experimental investigation, have been observed and analyzed in drilling PCB through-holes. The results of the drilling experiment conducted with normal drill and specialized drill, indicate that appropriate chisel edge thinning is in favor of decreasing flank wear of the drill, but has no apparent effect on reducing burr size for PCB through-holes drilling.

2011 ◽  
Vol 423 ◽  
pp. 26-30
Author(s):  
S. Assif ◽  
M. Agouzoul ◽  
A. El Hami ◽  
O. Bendaou ◽  
Y. Gbati

Increasing demand for smaller consumer electronic devices with multi-function capabilities has driven the packaging architectures trends for the finer-pitch interconnects, thus increasing chances of their failures. A simulation of the Board Level Drop-Test according to JEDEC (Joint Electron Device Council) is performed to evaluate the solder joint reliability under drop impact test. After good insights to the physics of the problem, the results of the numerical analysis on a simple Euler-Bernoulli beam were validated against analytical analysis. Since the simulation has to be performed on ANSYS Mechanical which is an implicit software, two methods were proposed, the acceleration-input and the displacement-input. The results are the same for both methods. Therefore, the simulation is carried on the real standard model construction of the board package level2. Then a new improved model is proposed to satisfy shape regular element and accuracy. All the models are validated to show excellent first level correlation on the dynamic responses of Printed Circuit Board, and second level correlation on solder joint stress. Then a static model useful for quick design analysis and optimization’s works is proposed and validated. Finally, plasticity behavior is introduced on the solder ball and a non-linear analysis is performed.


2020 ◽  
Vol 10 (14) ◽  
pp. 5022
Author(s):  
Andrius Čeponis ◽  
Dalius Mažeika ◽  
Piotr Vasiljev

A numerical and experimental investigation of a flat, cross-shaped piezoelectric rotary motor is presented. The design and configuration of the motor allow it to be mounted directly to the printed circuit board or integrated into the other system where mounting space is limited. The design of the motor is based on the cross-shaped stator with 16 piezo ceramic plates, which are glued on it. The rotor is placed at the center of the stator and consists of two hemispheres, a shaft, and a preloading spring. Special clamping of the stator was developed as well. It consists of four V-shaped beam structures that allow it to rigidly clamp the stator with reduced damping effect to vibrations. The operation principle of the motor is based on the first in-plane bending mode of the cross-shaped stator. The motor excitation is performed through four harmonic signals, which have a phase difference of π/2. A numerical investigation of the motor was conducted to optimize the geometrical parameters of the stator and to analyze the displacement characteristics of the contacting point. The prototype of the motor was made, and the electrical, as well as rotation speed characteristics of the motor, were measured. The results of the experimental investigation showed that the motor is able to provide a maximum rotation speed of 972.62 RPM at 200 Vp-p when the preload force of 22.65 mN was applied.


Circuit World ◽  
2013 ◽  
Vol 39 (2) ◽  
pp. 82-94 ◽  
Author(s):  
Xiaohu Zheng ◽  
Zhiqiang Liu ◽  
Qinglong An ◽  
Xibin Wang ◽  
Zongwei Xu ◽  
...  

Author(s):  
Paul C.-P. Chao ◽  
Ching-Hua Kuan ◽  
Jia-Wei Su

The rapid development of portable electronic products in recent years increases demands of varied displays. With resolutions of panel sizes and pixels under current drive capability improved, this study is intended for designing an inductive DC boost converter circuit for displays, which is fully integrated with IC fabrication technology [1][2]. Most of current displays employ capacitances for voltage-boosting to supply relative high-voltage biases to displays. These booster circuits are in small sizes and with high efficiency, but limited output currents, which are inadequate for some of large-sized displays. To remedy the problem, an on-board, small-sized inductor in the forms of coils in a printed circuit board (PCB) is proposed for a superior solution. This PCB-type inductor can be incorporated into the same board with other drive chips for the displays, while offering large, adequate current, as an incapable task via an on-chip coil.


Author(s):  
Yean-Der Kuan ◽  
Chia-Hao Chang

The printed circuit board (PCB)-based direct methanol fuel cell (DMFC) package is a novel manufacturing and assembly process, which is full potential in mass production, and very limited literatures make study on the effects of the related process parameters. The hot press is a necessary and key process to make the PCB package, i.e., the key component of a DMFC, membrane electrode assemblies (MEA), needs to sustain a severe test. In order to minimize the process-induced damage of the MEAs, it is important to make a good control on the process parameters. Therefore, the objective of this paper is to present a methodology to explore a good combination of hot-press parameters. The considered parameters include the compression ratio of the MEA, heating time, heating temperature, and hot pressing pressure acting on the MEA. During the experimental investigation, a series of experiments was made first to discuss the effect of the individual parameter of the hot-press process on the MEA performance, wherein a reasonable range of each process parameter condition was able to be well defined. Moreover, the Taguchi experimental method was adopted to explore the parameter effects on the DMFC performance during the digital packaging process and to determine the best combination of parameter conditions. At the end, a MEA was made a hot press under the best parameter combination, which could verify the result obtained from Taguchi’s experiments. The result is able to be an important reference for the future manufacturing design guideline of PCB-based DMFC package.


Author(s):  
Noor Mohmmed Khan ◽  
Shubhangi Patil ◽  
Tushar Diggewadi ◽  
Anand Gudnavar

As we know that there is ever increasing demand for compact circuits and less complex wirings over the board, a technological boon evolved for such demand is Printed Circuit Board (PCB). A PCB will mechanically supports and electrically connects electronic components using conductive tracks, pads. These boards will have minimal chances for short circuits, components on the board are fixed; another advantage is creation of multiple boards using single design. Taking this technology forward to our everyday life, we implemented analog communication laboratory circuit, Schmitt trigger.


2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Agung Yanuar Wirapraja ◽  
Handaru Bowo Cahyono ◽  
Mohamad Marhaendra Ali

Some electronic products have high electromagnetic interference so that it gives a negative impact on the electronic devices around it. The use of electromagnetic shielding is a solution to reduce the value of electromagnetic radiation interference from electronic products. The research conducted includes the manufacture of electromagnetic shielding from copper material resulting from the electrolysis process of PCB (Printed Circuit Board) industrial wastewater and analyzing the effect of electromagnetic shielding from copper waste on the value of radiation emission. Electromagnetic shielding is made of vinyl which is coated with copper as a result of the electrolysis of PCB industrial wastewater. The measurement results show that electromagnetic shielding from copper waste can reduce radiation emissions. The use of electromagnetic shielding from copper waste is effective at frequencies from 250 to 350 MHz with a decrease in the quasi-peak value of 38.02 dB. The measurements with horizontal antenna polarization show that the margin of radiation emission value is higher comparated to vertical antenna polarization.Sebagian produk elektronika memiliki gangguan interferensi elektromagnetik yang tinggi, sehingga berdampak kurang baik terhadap perangkat elektronika di sekitarnya. Pemanfaatan shielding elektromagnetik menjadi solusi untuk mengurangi nilai gangguan radiasi elektromagnetik yang dimiliki oleh produk elektronika. Penelitian yang dilakukan meliputi pembuatan shielding elektromagnetik dari bahan tembaga hasil dari proses elektrolisis limbah industri PCB (Printed Circuit Board) dan melakukan analisa pengaruh shielding elektromagnetik dari limbah tembaga terhadap nilai emisi radiasi. Shielding elektromagnetik terbuat dari bahan vinyl yang dilapisi dengan tembaga hasil elektrolisis limbah cair industri PCB. Hasil pengukuran menunjukkan bahwa shielding elektromagnetik dari limbah tembaga dapat menurunkan emisi radiasi. Penggunaan shielding elektromagnetik dari limbah tembaga efektif di frekuensi 250 – 350 MHz dengan penurunan nilai quasi-peak sebesar 38,02 dB. Pada pengukuran dengan polarisasi antena horisontal, margin nilai emisi radiasi lebih tinggi jika dibandingkan dengan polarisasi antena vertikal. Kata Kunci: Shielding elektromagnetik, Emisi radiasi, Tembaga, PCB


Sign in / Sign up

Export Citation Format

Share Document