scholarly journals Installation Time of an Initial Support for Tunnel Excavation upon the Safety Factors of Surrounding Rock

2020 ◽  
Vol 10 (16) ◽  
pp. 5653
Author(s):  
Yan-Jun Zhang ◽  
Kai Su ◽  
Hong-Ze Zhu ◽  
Zhong-Dong Qian ◽  
He-Gao Wu

In engineering practice, the initial support system is commonly installed in the vicinity of the tunnel face after excavation, whereas the self-capacity of rock mass will fail to be utilized and the cost of the initial support system will be expensive. In this study, a methodology is proposed to determine the appropriate timing of initial support installation to find out the balance of tunnel safety and construction cost. Firstly, the global safety factor is introduced as the critical indicator to evaluate tunnel stability. Then, the comprehensive graphic relationship between the global safety factor and the distance to the tunnel face is established. Once the global safety factor decreases to an admissible value, the stability of the surrounding rock is in a critical state and the corresponding distance is the recommended location for installing the initial support. In these procedures, the installation time of the initial support at the typical tunnel section can be quickly designed and fed back by a direct indicator during construction. Meanwhile, several cases with different conditions have been carried out to discuss the regularity of the method.

2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


2012 ◽  
Vol 164 ◽  
pp. 414-417
Author(s):  
Jia Ming Han

Commonly used finite element strength reduction to calculate the safety factor of slope,to analyze the stability of the slope[1~3]. Recently it also proposed the methods to evaluate the safety factor for the stability of surrounding rock of underground chambers and supporting structural mechanics[4~6]. For Qinling Mountains of the complex geological conditions in the Maanziliang highway tunnel, this article use the finite element method from the bolt resist tension, bolt length, the force of sprayed layer of concrete to computing gradeⅤsurrounding rock section of primary support safety factor, to give evaluation to support mechanics of the Maanziliang tunnel.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Junwen Zhang ◽  
Yulin Li

There are series of problems faced by most of the coal mines in China, ranging from low-coal recovery rate and strained replacement of working faces to gas accumulation in the upper corner of coalfaces. Based on the gob-side entry retaining at the No. 18205 working face in a coal mine in Shanxi Province, theoretical analysis, numerical simulation, and engineering practice were comprehensively used to study the mechanical characteristics of the influence of the width of the filling body beside the roadway and the stability of surrounding rock in a high-gas-risk mine. The rational width of the filling body beside the roadway was determined, and a concrete roadway-side support with a headed reinforcement-integrated strengthening technique was proposed, which have been applied in engineering practice. The stability of the filling body beside the roadway is mainly influenced by the movement of the overlying rock strata, and the stability of the surrounding rock can be improved effectively by rationally determining the width of the filling body beside the roadway. When the width of the roadway-side filling body is 2.5 m, the surrounding rock convergence of the gob-side entry retaining is relatively small at only 5% of the convergence ratio. It has been shown that the figure for roof separation is relatively low, and strata behaviors are relatively alleviated and gas density do not exceed the limit, which are the best results of gob-side entry retaining. The results of this research can provide theoretical guidance for excavation of coal mines with similar geological conditions and have some referential significance to safety and efficient production in coal mines.


2019 ◽  
Vol 131 ◽  
pp. 01027
Author(s):  
Li Yongbing ◽  
Binglei Li ◽  
Guanyu Hua ◽  
Xinran Jia ◽  
Yanqiao Chen ◽  
...  

Based on the Mohr-Coulomb elastic-plastic model and the practical engineering background of Mopanshan tunnel, this paper applies the finite-difference software FLAC3D to simulate and analyse the whole process of loess tunnel construction. Then, it analyses the stability of the surrounding rock and sup-port structure after partial excavation of the loess tunnel under the shallow burying and unsymmetrical load-ing condition. The study showed that in the absence of support, the shear failure occurred to the top/upper pilot tunnel of the tunnel face, the failure zone under tensile stress happened to the shallow soil of the earth surface, and the soil of tunnel face appeared to be damaged. Finally, according to the analysis results, a rea-sonable construction method suitable for the shallow and bias loess tunnel is determined.


2011 ◽  
Vol 255-260 ◽  
pp. 1926-1929
Author(s):  
Da Kun Shi ◽  
Yang Song Zhang

Based on geologic condition of one tunnel surrounding rock mass, systematic numerical tests had been carried out to study the stability of surrounding rock mass with different distributions of weak intercalated rock by the FEM software ABAQUS and strength reduction finite element method. Some quantificational results about the stability of surrounding rock mass were summarized. And the safety factor and latent slip surface were worked out. The stability of surrounding rock mass was judged by strength reduction finite element method. According to the analysis above, it’s known that the discrepancy of two rules is small; the safety factor is the lowest when weak intercalated rock in vault, and when at bottom, it’s higher than that of in vault. The conclusion can be used to guide the procedure of construction and ensure the safety.


2014 ◽  
Vol 501-504 ◽  
pp. 1732-1735
Author(s):  
Jie Liu ◽  
Liang Tang ◽  
Ya Zuo ◽  
Jin Long Guo

Analyzing and Evaluating the stability of the surrounding rock is an indispensable and important part in the tunnel design. In this paper, the surrounding rock stability of Danba hydropower station diversion tunnel is dealt with, FLAC3Dsoftware is used for stability analysis. Selecting three different cross sections for calculation models, comparing with the displacement and principal stress and the plastic zone which calculated by FLAC3D, we can evaluate their stability and get the best diversion tunnel design.


2011 ◽  
Vol 90-93 ◽  
pp. 2073-2079
Author(s):  
Yu Feng Wang ◽  
Zhi Qiang Liu ◽  
Bin Song Jiang

In order to improve the mining benefit of coal resources, Chang Gouyu Coal Mine carried out the technology of mining without coal pillar in steep seam. The key of the technology was to ensure a long-term stability of the cross-entry roadway across the seam. Through the analysis of the nature of steep seam roof and floor rock, and based on the stability analysis and loose circle measured of surrounding rock of crosscut roadway, we brought forward adopting shotcrete rockbolt mesh and U-shaped steel complex support structure system. This complex support system could flex lengthways and compress in radial direction. The entirety integrated with the surrounding rock, and they formed into a whole. Application of the complex support system could effectively control the deformation of the surrounding rock collapse, and maintain the stability of the crosscut.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Fu Huang ◽  
Zai-lan Li ◽  
Tong-hua Ling

A method to evaluate the stability of tunnel face is proposed in the framework of upper bound theorem. The safety factor which is widely applied in slope stability analysis is introduced to estimate the stability of tunnel face using the upper bound theorem of limit analysis in conjunction with a strength reduction technique. Considering almost all geomaterials following a nonlinear failure criterion, a generalized tangential technique is used to calculate the external work and internal energy dissipation in the kinematically admissible velocity field. The upper bound solution of safety factor is obtained by optimization calculation. To evaluate the validity of the method proposed in this paper, the safety factor is compared with those calculated by limit equilibrium method. The comparison shows the solutions derived from these two methods match each other well, which shows the method proposed in this paper can be considered as effective.


2021 ◽  
Author(s):  
Jindong Cao ◽  
Xiaojie Yang ◽  
Ruifeng Huang ◽  
Qiang Fu ◽  
Yubing Gao

Abstract The high stress of the surrounding rock of Hexi Coal Mine easily leads to severe deformation of the retracement channel and the appearance of the mine pressure during the retreat severely affects the stability of the roadway. In order to solve the above problems, a roadway surrounding rock control technology is proposed and tested. The bidirectional energy-concentrated tensile blasting technology is used to perform directional cutting to cut off the stress propagation path. Firstly, the deformation mechanism of the roof is analyzed by establishing the deformation mechanical model of the roof of the retracement channel. Then, according to the geological conditions of working face 3314 and theoretical calculation, the key parameters of roof cutting and pressure releasing of retracement channel are determined, and through the numerical analysis of its cutting effect, the length of cutting seam is 11.5m, and the cutting angle is 10°. Finally, a field test is carried out on the retracement channel of 3314 working face to verify the effect of roof cutting. The results show that the deformation of the retracement channel and the main roadway is very small. In the process of connecting the working face and the retracement channel, the maximum roof to floor convergence is 141mm, and the two sides convergence is 79mm. After the hydraulic support was retracted, the maximum roof to floor convergence of the surrounding rock is 37 mm, and the two sides convergence is 33mm. The roof cutting and pressure releasing of the retracement channel ensures the safe evacuation of the equipment and the stability of the main roadway. The cutting effect is obvious for the release of pressure, which is of great significance to engineering practice.


Sign in / Sign up

Export Citation Format

Share Document