scholarly journals Combining Post Sentiments and User Participation for Extracting Public Stances from Twitter

2020 ◽  
Vol 10 (22) ◽  
pp. 8035
Author(s):  
Jenq-Haur Wang ◽  
Ting-Wei Liu ◽  
Xiong Luo

With the wide popularity of social media, it’s becoming more convenient for people to express their opinions online. To better understand what the public think about a topic, sentiment classification techniques have been widely used to estimate the overall orientation of opinions in post contents. However, users might have various degrees of influence depending on their participation in discussions on different topics. In this paper, we address the issues of combining sentiment classification and link analysis techniques for extracting stances of the public from social media. Since social media posts are usually very short, word embedding models are first used to learn different word usages in various contexts. Then, deep learning methods such as Long Short-Term Memory (LSTM) are used to learn the long-distance context dependency among words for better estimation of sentiments. Third, we consider the major user participation in popular social media by adjusting the users weights to reflect their relative influence in user-post interaction graphs. Finally, we combine post sentiments and user influences into a total opinion score for extracting public stances. In the experiments, we evaluated the performance of our proposed approach for tweets about the 2016 U.S. Presidential Election. The best performance of sentiment classification can be observed with an F-measure of 72.97% for LSTM classifiers. This shows the effectiveness of deep learning methods in learning word usage in social media contexts. The experimental results on stance extraction showed the best performance of 0.68% Mean Absolute Error (MAE) in aggregating public stances on election candidates. This shows the potential of combining tweet sentiments and user participation structures for extracting the aggregate stances of the public on popular topics. Further investigation is needed to verify the performance in different social media sources.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3719
Author(s):  
Aoxin Ni ◽  
Arian Azarang ◽  
Nasser Kehtarnavaz

The interest in contactless or remote heart rate measurement has been steadily growing in healthcare and sports applications. Contactless methods involve the utilization of a video camera and image processing algorithms. Recently, deep learning methods have been used to improve the performance of conventional contactless methods for heart rate measurement. After providing a review of the related literature, a comparison of the deep learning methods whose codes are publicly available is conducted in this paper. The public domain UBFC dataset is used to compare the performance of these deep learning methods for heart rate measurement. The results obtained show that the deep learning method PhysNet generates the best heart rate measurement outcome among these methods, with a mean absolute error value of 2.57 beats per minute and a mean square error value of 7.56 beats per minute.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 898 ◽  
Author(s):  
Suhwan Ji ◽  
Jongmin Kim ◽  
Hyeonseung Im

Bitcoin has recently received a lot of attention from the media and the public due to its recent price surge and crash. Correspondingly, many researchers have investigated various factors that affect the Bitcoin price and the patterns behind its fluctuations, in particular, using various machine learning methods. In this paper, we study and compare various state-of-the-art deep learning methods such as a deep neural network (DNN), a long short-term memory (LSTM) model, a convolutional neural network, a deep residual network, and their combinations for Bitcoin price prediction. Experimental results showed that although LSTM-based prediction models slightly outperformed the other prediction models for Bitcoin price prediction (regression), DNN-based models performed the best for price ups and downs prediction (classification). In addition, a simple profitability analysis showed that classification models were more effective than regression models for algorithmic trading. Overall, the performances of the proposed deep learning-based prediction models were comparable.


MATEMATIKA ◽  
2020 ◽  
Vol 36 (2) ◽  
pp. 99-111
Author(s):  
Kartika Fithriasari ◽  
Saidah Zahrotul Jannah ◽  
Zakya Reyhana

Social media is used as a tool by many people to express their opinions. Sentiment analysis for social media is very important, as it allows information to be obtained about public opinion on government performance. The goal of this research is to learn about the opinions of Surabaya citizens, using deep learning methods. The data are extracted from the official Twitter accounts of the Surabaya government and a private radio station in Surabaya. The data are grouped into two categories: positive and negative sentiments. This research is conducted in three steps: data pre-processing, sentiment classification, and visualization. Data pre-processing is required before modelling approaches are applied. It is used to transform the unstructured text data into structured data. The data pre-processing consists of case folding, tokenizing, and the removal of stop words. Deep learning methods are then applied to the data. A Backpropagation Neural Network (BNN) and a Convolutional Neural Network (CNN) are used to perform the sentiment classification. The BNN and CNN are compared using various metrics, such as precision, sensitivity, and area under the receiver operating characteristic curve (AUC). A word cloud is then used to visualize the data and find the most frequent words in each class. The results show that the sentiment classification with CNN is better than that with the BNN because the values for the precision, sensitivity and AUC are higher.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 255
Author(s):  
Lei Wang ◽  
Yigang He ◽  
Lie Li

High voltage direct current (HVDC) transmission systems play an increasingly important role in long-distance power transmission. Realizing accurate and timely fault location of transmission lines is extremely important for the safe operation of power systems. With the development of modern data acquisition and deep learning technology, deep learning methods have the feasibility of engineering application in fault location. The traditional single-terminal traveling wave method is used for fault location in HVDC systems. However, many challenges exist when a high impedance fault occurs including high sampling frequency dependence and difficulty to determine wave velocity and identify wave heads. In order to resolve these problems, this work proposed a deep hybrid convolutional neural network (CNN) and long short-term memory (LSTM) network model for single-terminal fault location of an HVDC system containing mixed cables and overhead line segments. Simultaneously, a variational mode decomposition–Teager energy operator is used in feature engineering to improve the effect of model training. 2D-CNN was employed as a classifier to identify fault segments, and LSTM as a regressor integrated the fault segment information of the classifier to achieve precise fault location. The experimental results demonstrate that the proposed method has high accuracy of fault location, with the effects of fault types, noise, sampling frequency, and different HVDC topologies in consideration.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Yuling Hong ◽  
Qishan Zhang

Purpose. The purpose of this article is to predict the topic popularity on the social network accurately. Indicator selection model for a new definition of topic popularity with degree of grey incidence (DGI) is undertook based on an improved analytic hierarchy process (AHP). Design/Methodology/Approach. Through screening the importance of indicators by the deep learning methods such as recurrent neural networks (RNNs), long short-term memory (LSTM), and gated recurrent unit (GRU), a selection model of topic popularity indicators based on AHP is set up. Findings. The results show that when topic popularity is being built quantitatively based on the DGI method and different weights of topic indicators are obtained from the help of AHP, the average accuracy of topic popularity prediction can reach 97.66%. The training speed is higher and the prediction precision is higher. Practical Implications. The method proposed in the paper can be used to calculate the popularity of each hot topic and generate the ranking list of topics’ popularities. Moreover, its future popularity can be predicted by deep learning methods. At the same time, a new application field of deep learning technology has been further discovered and verified. Originality/Value. This can lay a theoretical foundation for the formulation of topic popularity tendency prevention measures on the social network and provide an evaluation method which is consistent with the actual situation.


Author(s):  
Yuheng Hu ◽  
Yili Hong

Residents often rely on newspapers and television to gather hyperlocal news for community awareness and engagement. More recently, social media have emerged as an increasingly important source of hyperlocal news. Thus far, the literature on using social media to create desirable societal benefits, such as civic awareness and engagement, is still in its infancy. One key challenge in this research stream is to timely and accurately distill information from noisy social media data streams to community members. In this work, we develop SHEDR (social media–based hyperlocal event detection and recommendation), an end-to-end neural event detection and recommendation framework with a particular use case for Twitter to facilitate residents’ information seeking of hyperlocal events. The key model innovation in SHEDR lies in the design of the hyperlocal event detector and the event recommender. First, we harness the power of two popular deep neural network models, the convolutional neural network (CNN) and long short-term memory (LSTM), in a novel joint CNN-LSTM model to characterize spatiotemporal dependencies for capturing unusualness in a region of interest, which is classified as a hyperlocal event. Next, we develop a neural pairwise ranking algorithm for recommending detected hyperlocal events to residents based on their interests. To alleviate the sparsity issue and improve personalization, our algorithm incorporates several types of contextual information covering topic, social, and geographical proximities. We perform comprehensive evaluations based on two large-scale data sets comprising geotagged tweets covering Seattle and Chicago. We demonstrate the effectiveness of our framework in comparison with several state-of-the-art approaches. We show that our hyperlocal event detection and recommendation models consistently and significantly outperform other approaches in terms of precision, recall, and F-1 scores. Summary of Contribution: In this paper, we focus on a novel and important, yet largely underexplored application of computing—how to improve civic engagement in local neighborhoods via local news sharing and consumption based on social media feeds. To address this question, we propose two new computational and data-driven methods: (1) a deep learning–based hyperlocal event detection algorithm that scans spatially and temporally to detect hyperlocal events from geotagged Twitter feeds; and (2) A personalized deep learning–based hyperlocal event recommender system that systematically integrates several contextual cues such as topical, geographical, and social proximity to recommend the detected hyperlocal events to potential users. We conduct a series of experiments to examine our proposed models. The outcomes demonstrate that our algorithms are significantly better than the state-of-the-art models and can provide users with more relevant information about the local neighborhoods that they live in, which in turn may boost their community engagement.


2020 ◽  
Author(s):  
Mohammad Taghi Sattari ◽  
Halit Apaydin ◽  
Shahab Shamshirband ◽  
Amir Mosavi

Abstract. Proper estimation of the reference evapotranspiration (ET0) amount is an indispensable matter for agricultural water management in the efficient use of water. The aim of study is to estimate the amount of ET0 with a different machine and deep learning methods by using minimum meteorological parameters in the Corum region which is an arid and semi-arid climate with an important agricultural center of Turkey. In this context, meteorological variables of average, maximum and minimum temperature, sunshine duration, wind speed, average, maximum, and minimum relative humidity are used as input data monthly. Two different kernel-based (Gaussian Process Regression (GPR) and Support Vector Regression (SVR)) methods, BFGS-ANN and Long short-term memory models were used to estimate ET0 amounts in 10 different combinations. According to the results obtained, all four methods used predicted ET0 amounts in acceptable accuracy and error levels. BFGS-ANN model showed higher success than the others. In kernel-based GPR and SVR methods, Pearson VII function-based universal kernel was the most successful kernel function. Besides, the scenario that is related to temperature in all scenarios used, including average temperature, maximum and minimum temperature, and sunshine duration gave the best results. The second-best scenario was the one that covers only the sunshine duration. In this case, the ANN (BFGS-ANN) model, which is optimized with the BFGS method that uses only the sunshine duration, can be estimated with the 0.971 correlation coefficient of ET0 without the need for other meteorological parameters.


2021 ◽  
Author(s):  
Gaurav Chachra ◽  
Qingkai Kong ◽  
Jim Huang ◽  
Srujay Korlakunta ◽  
Jennifer Grannen ◽  
...  

Abstract After significant earthquakes, we can see images posted on social media platforms by individuals and media agencies owing to the mass usage of smartphones these days. These images can be utilized to provide information about the shaking damage in the earthquake region both to the public and research community, and potentially to guide rescue work. This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter and thus identify the particular user posts containing such images. Using transfer learning and ~6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene. The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey. Furthermore, to better understand how the model makes decisions, we also implemented the Grad-CAM method to visualize the important locations on the images that facilitate the decision.


Sign in / Sign up

Export Citation Format

Share Document