scholarly journals Performance Analysis and Comparison of Two Base Isolation Systems with Super-Large Displacement Friction Pendulum Bearings

2020 ◽  
Vol 10 (22) ◽  
pp. 8235
Author(s):  
Peisong Wu ◽  
Jinping Ou

Isolation technology has been successfully applied in seismic migration. With increasing of seismic demand, seismic performance of isolation structures subjected to very-rare earthquakes need further improvement. However, the isolation layer generally lacks sufficient deformation ability under very-rare earthquakes due to the deformation limit of classical isolation bearing. In order to circumvent the difficulty, this paper develops two new isolation bearings, namely super-large displacement rotation friction pendulum bearing (SLDRFPB) and super-large displacement translation friction pendulum bearing (SLDTFPB). By setting spherical shells with large span and large radius, large horizontal displacement and small horizontal stiffness can be achieved. Safety of the isolation layer and the isolation effect of the superstructure can be greatly improved. SLDTFPB differs from SLDRFPB in the motion state of the superstructure and space utilization of the isolation layer, thus SLDRFPB and SLDTFPB are suitable for structures with different requirements. Due to rotation of the superstructure with SLDRFPB or sliding frames in SLDTFPB, the traditional design method of friction pendulum bearing is no longer suitable. We present a new procedure to accurately and conveniently evaluate seismic performance of two developed bearings. Numerical simulation shows that the seismic response of both the superstructure and isolation layer is small. Developed SLDRFPB and SLDTFPB have sufficient emergency capacity and isolation resilience when subjected to very-rare earthquakes.

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 199-206
Author(s):  
Bertha Olmos ◽  
José Jara ◽  
José Luis Fabián

This paper investigates the effects of the nonlinear behaviour of isolation pads on the seismic capacity of bridges to identify the parameters of base isolation systems that can be used to improve seismic performance of bridges. A parametric study was conducted by designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (acceleration, displacement and pier seismic forces) were evaluated for two structural models. The first model corresponded to the bridges supported on elastomeric bearings with linear elastic behaviour and the second model simulated a base isolated bridge that accounts for the nonlinear behaviour of the system. The seismic demand was represented with a group of twelve real accelerograms recorded on the subduction zone on the Pacific Coast of Mexico. The nonlinear responses under different damage scenarios for the bridges included in the presented study were estimated. These results allow determining the seismic capacity of the bridges with and without base isolation. Results show clearly the importance of considering the nonlinear behaviour on the seismic performance of bridges and the influence of base isolation on the seismic vulnerability of medium size bridges.


2020 ◽  
Vol 10 (15) ◽  
pp. 5259
Author(s):  
Jiaxi Li ◽  
Shoichi Kishiki ◽  
Satoshi Yamada ◽  
Shinsuke Yamazaki ◽  
Atsushi Watanabe ◽  
...  

Isolation systems are currently being widely applied for earthquake resistance. During the design stage for such systems, the displacement response and input energy of the isolation layer are two of the main concerns. The prediction of these values is also of vital importance during the early stages of the structural design. In this study, the simple prediction method of double concave friction pendulum (DCFP) bearings is proposed, which can relate the response displacement of the isolation layer to the ground velocity through energy transfer with sufficient accuracy. Two friction models (the precise and simplified model) and a constant friction coefficient of double concave friction pendulum (DCFP) bearings are comprehensively validated by full-scale sinusoidal dynamic tests under various conditions. In addition, a response analysis, based on previous studies, was conducted using the friction models under selected unidirectional earthquake excitations, and the accuracy of using the simplified model in the response analysis was verified. Based on the response analysis data, this article verifies and optimizes the proposed prediction method by parameterizing the characteristics of earthquakes and combining the energy balance in order to gain a deeper understanding of the design of the isolation systems.


2016 ◽  
Vol 24 (7) ◽  
pp. 1264-1282 ◽  
Author(s):  
Saman Bagheri ◽  
Mostafa Farajian

There are several methods to reduce the seismic damages in liquid storage tanks. One of these methods is to use passive control devices, in particular seismic base isolators. Among the different base isolation systems, the Friction Pendulum System (FPS) whose period does not depend on the weight of the system is more appropriate for isolation of liquid storage tanks. The aim of this paper is to investigate the effects of peak ground acceleration (PGA) and pulselike characteristics of earthquakes on the seismic behavior of steel liquid storage tanks base isolated by FPS bearings. In addition, impact effects of the slider with the side retainer are investigated, as well as effects of tank aspect ratio, isolation period and friction coefficient. The obtained results of tanks with different aspect ratios indicate that the responses get more reduced due to isolation under far-field ground motions compared to near-fault ground motions. It is also seen that the response of a base isolated tank is affected when contact takes place with the side retainer of the FPS.


2016 ◽  
Vol 846 ◽  
pp. 114-119
Author(s):  
Arati Pokhrel ◽  
Jian Chun Li ◽  
Yan Cheng Li ◽  
Nicos Maksis ◽  
Yang Yu

Due to the fact that safety is the major concern for civil structures in a seismic active zone, it has always been a challenge for structural engineers to protect structures from earthquake. During past several decades base isolation technique has become more and more popular in the field of seismic protection which can be adopted for new structures as well as the retrofit of existing structures. The objective of this study is to evaluate the behaviours of the building with different seismic isolation systems in terms of roof acceleration, elastic base shear and inter-storey drift under four benchmark earthquakes, namely, El Centro, Northridge, Hachinohe and Kobe earthquakes. Firstly, the design of base isolation systems, i.e. lead rubber bearing (LRB) and friction pendulum bearing (FPB) for five storey RC building was introduced in detail. The non-linear time history analysis was performed in order to determine the structural responses whereas Bouc-Wen Model of hysteresis was adopted for modelling the bilinear behaviour of the bearings. Both isolation systems increase the fundamental period of structures and reduces the spectral acceleration, and hence reduces the lateral force cause by earthquake in the structures, resulting in significant improvement in building performance; however the Lead Rubber Bearing provided the best reduction in elastic base shear and inter-storey drift (at first floor) for most of the benchmark earthquakes. For the adopted bearing characteristics, FPB provided the low isolator displacement.


Sign in / Sign up

Export Citation Format

Share Document