scholarly journals The Influence of Image Processing and Layer-to-Background Contrast on the Reliability of Flatbed Scanner-Based Characterisation of Additively Manufactured Layer Contours

2020 ◽  
Vol 11 (1) ◽  
pp. 178
Author(s):  
David Blanco ◽  
Pedro Fernández ◽  
Alejandro Fernández ◽  
Braulio J. Alvarez ◽  
José Carlos Rico

Flatbed scanners (FBSs) provide non-contact scanning capabilities that could be used for the on-machine verification of layer contours in additive manufacturing (AM) processes. Layer-wise contour deviation assessment could be critical for dimensional and geometrical quality improvement of AM parts, because it would allow for close-loop error compensation strategies. Nevertheless, contour characterisation feasibility faces many challenges, such as image distortion compensation or edge detection quality. The present work evaluates the influence of image processing and layer-to-background contrast characteristics upon contour reconstruction quality, under a metrological perspective. Considered factors include noise filtering, edge detection algorithms, and threshold levels, whereas the distance between the target layer and the background is used to generate different contrast scenarios. Completeness of contour reconstruction is evaluated by means of a coverage factor, whereas its accuracy is determined by comparison with a reference contour digitised in a coordinate measuring machine. Results show that a reliable contour characterisation can be achieved by means of a precise adjustment of image processing parameters under low layer-to-background contrast variability. Conversely, under anisotropic contrast conditions, the quality of contour reconstruction severely drops, and the compromise between coverage and accuracy becomes unbalanced. These findings indicate that FBS-based characterisation of AM layers will demand developing strategies that minimise the influence of anisotropy in layer-to-background contrast.

Author(s):  
Y.A. Hamad ◽  
K.V. Simonov ◽  
A.S. Kents

The paper considers general approaches to image processing, analysis of visual data and computer vision. The main methods for detecting features and edges associated with these approaches are presented. A brief description of modern edge detection and classification algorithms suitable for isolating and characterizing the type of pathology in the lungs in medical images is also given.


2018 ◽  
Vol 12 (4) ◽  
pp. 264-271 ◽  
Author(s):  
Alireza Izadi ◽  
Fariborz Vafaee ◽  
Arash Shishehian ◽  
Ghodratollah Roshanaei ◽  
Behzad Fathi Afkari

Background. Recently, non-presintered chromium-cobalt (Cr-Co) blocks with the commercial name of Ceramill Sintron were introduced to the market. However, comprehensive studies on the dimensional accuracy and fit of multi-unit frameworks made of these blocks using the coordinate measuring machine (CMM) are lacking. This study aimed to assess and compare the dimensional changes and fit of conventional casting and milled frameworks using Ceramill Sintron. Methods. A metal model was designed and scanned and 5-unit frameworks were fabricated using two techniques: (I) the conventional casting method (n=20): the wax model was designed, milled in the CAD/CAM machine, flasked and invested; (II) the milling method using Ceramill Sintron blocks (n=20): the wax patterns of group 1 were used; Ceramill Sintron blocks were milled and sintered. Measurements were made on the original reference model and the fabricated frameworks using the CMM in all the three spatial dimensions, and dimensional changes were recorded in a checklist. Data were analyzed with descriptive statistics, and the two groups were compared using one-way ANOVA and Tukey test (α=0.05). Results. The fabricated frameworks in both groups showed significant dimensional changes in all the three dimensions. Comparison of dimensional changes between the two groups revealed no significant differences (P>0.05) except for transverse changes (arch) that were significantly greater in Ceramill Sintron frameworks (P<0.05). Conclusion. The two manufacturing processes were the same regarding dimensional changes and the magnitude of marginal gaps and both processes resulted in significant dimensional changes in frameworks. Ceramill Sintron frameworks showed significantly greater transverse changes than the conventional frameworks.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Manuel Henriques ◽  
Duarte Valério ◽  
Paulo Gordo ◽  
Rui Melicio

Many image processing algorithms make use of derivatives. In such cases, fractional derivatives allow an extra degree of freedom, which can be used to obtain better results in applications such as edge detection. Published literature concentrates on grey-scale images; in this paper, algorithms of six fractional detectors for colour images are implemented, and their performance is illustrated. The algorithms are: Canny, Sobel, Roberts, Laplacian of Gaussian, CRONE, and fractional derivative.


2021 ◽  
Vol 11 (5) ◽  
pp. 2353
Author(s):  
Ján Varga ◽  
Teodor Tóth ◽  
Peter Frankovský ◽  
Ľudmila Dulebová ◽  
Emil Spišák ◽  
...  

This paper deals with various automated milling strategies and their influence on the accuracy of produced parts. Among the most important factors for surface quality is the automated milling strategy. Milling strategies were generated from two different programs, CAM system SolidCAM, with the help of workshop programming in the control system Heidenhain TNC 426. In the first step, simulations of different toolpaths were conducted. Using geometric tolerance is becoming increasingly important in robotized production, but its proper application requires a deeper understanding. This article presents the measurement of selected planes of robotized production to evaluate their flatness, parallelism and perpendicularity deviations after milling on the coordinate measuring machine Carl Zeiss Contura G2. Total average deviations, including all geometric tolerances, were 0.020 mm for SolidCAM and 0.016 mm for Heidenhain TNC 426. The result is significantly affected by the flatness of measured planes, where the overlap parameter of the tools has a significant impact on the flatness of the surface. With interchangeable cutter plate tools, it is better to use higher overlap to achieve better flatness. There is a significant difference in production time, with SolidCAM 25 min and 30 s, and Heidenhain 48 min and 19 s. In accordance with these findings, the SolidCAM system is more suitable for production.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


Sign in / Sign up

Export Citation Format

Share Document