scholarly journals Analysis and Experimental Verification of Mechanical Errors in Nine-Link Type Double-Toggle Mold/Die Clamping Mechanisms

2021 ◽  
Vol 11 (2) ◽  
pp. 832
Author(s):  
Wen-Tung Chang ◽  
Wei-I Lee ◽  
Kuan-Lun Hsu

Nine-link type double-toggle mold/die clamping mechanisms are widely used in modern injection molding machines and die casting machines in order to provide sufficient mold/die clamping force for counteracting the pressure occurred inside molds/dies. In this paper, the analysis and experimental evaluation of mechanical errors in nine-link type double-toggle mold/die clamping mechanisms are presented. The kinematic error equations of the output link (i.e., the moving platen) caused by dimensional errors (or tolerances) of link members are derived analytically through the concept of tolerance sensitivity analysis. Evaluation indices based on the asymmetry of the mold/die clamping mechanism caused by mechanical errors are established. A case study is then given to demonstrate the derived analytical equations and the established evaluation indices. Subsequently, a prototype for performing the experimental evaluation is conceptually designed and was actually constructed. Experiments were conducted for evaluating the quantitative influence of mechanical errors on the operating performance of the constructed mold/die clamping mechanism. According to the experimental results, response surface modelling for benefiting the constructed mold/die clamping mechanism with better operating performance could be performed. The presented research results will be helpful in the tolerance analysis and mechanical error detection of nine-link type double-toggle mold/die clamping mechanisms.

2019 ◽  
Vol 8 (6) ◽  
pp. 272 ◽  
Author(s):  
Iq Reviessay Pulshashi ◽  
Hyerim Bae ◽  
Hyunsuk Choi ◽  
Seunghwan Mun ◽  
Riska Asriana Sutrisnowati

Analysis of trajectory such as detection of an outlying trajectory can produce inaccurate results due to the existence of noise, an outlying point-locations that can change statistical properties of the trajectory. Some trajectories with noise are repairable by noise filtering or by trajectory-simplification. We herein propose the application of a trajectory-simplification approach in both batch and streaming environments, followed by benchmarking of various outlier-detection algorithms for detection of outlying trajectories from among simplified trajectories. Experimental evaluation in a case study using real-world trajectories from a shipyard in South Korea shows the benefit of the new approach.


2001 ◽  
Vol 12 (01) ◽  
pp. 97-124 ◽  
Author(s):  
EDGAR F. A. LEDERER ◽  
ROMEO A. DUMITRESCU

Two-Stage Programming (2SP) is an experimental programming language, the first implementation of the Specification-Consistent Coordination Model (SCCM). The SCCM proposes a new, mixed-paradigm (functional/imperative) approach to developing reliable programs based on complete run-time checking of computations with respect to a given specification. A 2SP program consists of a functional specification and an imperative coordination tightly connected to the specification. The coordination maps the specification to an imperative and possibly parallel/distributed program. Normal termination of a 2SP program execution implies the correctness of the computed results with respect to the specification, for that execution. We present the basic feautures of the SCCM/2SP, a new message-spassing system of 2SP with integrated run-time checking, and a larger case study. We show that 2SP provides: functional specifications, specification-consistent imperative coordinations, automatic run-time result verification and error detection, enhanced debugging support, and good efficiency.


Author(s):  
R. Ascione ◽  
W. Polini ◽  
Q. Semeraro

Many well-known approaches exist in the literature for tolerance analysis. All the methods proposed in the literature consider the dimensional and the geometric tolerances applied to some critical points (contact points among profiles belonging to couples of parts) on the surface of the assembly components. These points are generally considered uncorrelated since the nominal surface is considered. Therefore, the methods proposed in the literature do not consider the actual surface due to a manufacturing process. Every manufacturing process leaves on the surface a signature, i.e., a systematic pattern that characterizes all the features machined with that process. The aim of the present work is to investigate the effects of considering the manufacturing signature in solving a tolerance stack-up function. A case study involving three parts has been defined and solved by means of a method of the literature, the variational method, with and without considering the correlation among the points of the same surface due to the manufacturing signature. This work represents a first step toward the integration of the design and the manufacturing in a concurrent engineering approach.


1990 ◽  
Vol 30 (1-5) ◽  
pp. 513-520 ◽  
Author(s):  
Henrique Madeira ◽  
Gonçalo Quadros ◽  
João Gabriel Silva

Author(s):  
Robert Scott Pierce ◽  
David Rosen

In this research we describe a computer-aided approach to geometric tolerance analysis for assemblies and mechanisms. This new tolerance analysis method is based on the “generate-and-test” approach. A series of as-manufactured component models are generated within a NURBS-based solid modeling environment. These models reflect errors in component geometry that are characteristic of the manufacturing processes used to produce the components. The effects of different manufacturing process errors on product function is tested by simulating the assembly of these imperfect-form component models and measuring geometric attributes of the assembly that correspond to product functionality. A tolerance analysis model is constructed by generating-and-testing a sequence of component variants that represent a range of manufacturing process capabilities. The generate-and-test approach to tolerance analysis is demonstrated using a case study that is based on a high-speed stapling mechanism. As-manufactured models that correspond to two different levels of manufacturing precision are generated and assembly between groups of components with different precision levels is simulated. Misalignment angles that correspond to functionality of the stapling mechanism are measured at the end of each simulation. The results of these simulations are used to build a tolerance analysis model and to select a set of geometric form and orientation tolerances for the mechanism components. It is found that this generate-and-test approach yields insight into the interactions between individual surface tolerances that would not be gained using more traditional tolerance analysis methods.


2007 ◽  
Vol 52 (3) ◽  
pp. 231-247
Author(s):  
P. Reyes ◽  
P. Reviriego ◽  
J. A. Maestro ◽  
O. Ruano

Sign in / Sign up

Export Citation Format

Share Document