scholarly journals Self-Embedding Fragile Watermarking Scheme to Detect Image Tampering Using AMBTC and OPAP Approaches

2021 ◽  
Vol 11 (3) ◽  
pp. 1146
Author(s):  
Cheonshik Kim ◽  
Ching-Nung Yang

Research on self-embedding watermarks is being actively conducted to solve personal privacy and copyright problems by image attack. In this paper, we propose a self-embedded watermarking technique based on Absolute Moment Block Truncation Coding (AMBTC) for reconstructing tampered images by cropping attacks and forgery. AMBTC is suitable as a recovery bit (watermark) for the tampered image. This is because AMBTC has excellent compression performance and image quality. Moreover, to improve the quality of the marked image, the Optimal Pixel Adjustment Process (OPAP) method is used in the process of hiding AMBTC in the cover image. To find a damaged block in a marked image, the authentication data along with the watermark must be hidden in the block. We employ a checksum for authentication. The watermark is embedded in the pixels of the cover image using 3LSB and 2LSB, and the checksum is hidden in the LSB. Through the recovering procedure, it is possible to recover the original marked image from the tampered marked image. In addition, when the tampering ratio was 45%, the image (Lena) could be recovered at 36 dB. The proposed self-embedding method was verified through an experiment, and the result was the recovered image showed superior perceptual quality compared to the previous methods.

The watermarking scheme in digital media communication has become an essential tool in helping content creators prove ownership if any dispute arises in copyright infringement. In this paper, Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) is performed in the watermarking process which improves the authentication of the image and the detection of the tampered region. The semi-fragile watermarking scheme provides robustness to the watermark during extraction process even after the unintentional compression attacks like JPEG compression. The watermark payload is significantly lowered in order to increase the quality of the image. The recovery is done using the absolute moment block truncation coding (AMBTC) of the image in the untampered region. Thus, both the mean and first absolute moment are used in recovering the tampered regions in the watermarked image.


2021 ◽  
Vol 11 (8) ◽  
pp. 3418
Author(s):  
Cheonshik Kim ◽  
Dongkyoo Shin ◽  
Chingnung Yang ◽  
Lu Leng

Image compression technology and copyright protection are certainly the important technologies for free exchange of multimedia. For compression of an image, we propose a color Absolute Moment Block Trucation Coding (AMBTC) method using a common bit-plane created by k-means. In addition, a data hiding method based on a color AMBTC using Optimal Pixel Adjustment Process (OPAP) was proposed for copyright protection and confidential secret communication. The number of quantization levels of the proposed color AMBTC is nine per block. Therefore, the edge of the compressed color image can be expressed more delicately. As a result of the simulation, it can be seen that the edge of the image of the color AMBTC is close to the original image. Moreover, the data hiding performance of the proposed method also obtained excellent results. For the experiment, we measured the quality of the image using the Color Difference (CD) we proposed, and the measurement result was very satisfactory.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dongmei Niu ◽  
Hongxia Wang ◽  
Minquan Cheng ◽  
Canghong Shi

This paper presents a reference sharing mechanism-based self-embedding watermarking scheme. The host image is embedded with watermark bits including the reference data for content recovery and the authentication data for tampering location. The special encoding matrix derived from the generator matrix of selected systematic Maximum Distance Separable (MDS) code is adopted. The reference data is generated by encoding all the representative data of the original image blocks. On the receiver side, the tampered image blocks can be located by the authentication data. The reference data embedded in one image block can be shared by all the image blocks to restore the tampered content. The tampering coincidence problem can be avoided at the extreme. The maximal tampering rate is deduced theoretically. Experimental results show that, as long as the tampering rate is less than the maximal tampering rate, the content recovery is deterministic. The quality of recovered content does not decrease with the maximal tampering rate.


2020 ◽  
Author(s):  
Abdulkarem Almawgani ◽  
Adam Alhawari ◽  
Wlaed Alarashi ◽  
Ali Alshwal

Abstract Digital images are commonly used in steganography due to the popularity of digital image transfer and exchange through the Internet. However, the tradeoff between managing high capacity of secret data and ensuring high security and quality of stego image is a major challenge. In this paper, a hybrid steganography method based on Haar Discrete Wavelet Transform (HDWT), Lempel Ziv Welch (LZW) algorithm, Genetic Algorithm (GA), and the Optimal Pixel Adjustment Process (OPAP) is proposed. The cover image is divided into non-overlapping blocks of nxn pixels. Then, the HDWT is used to increase the robustness of the stego image against attacks. In order to increase the capacity for, and security of, the hidden image, the LZW algorithm is applied on the secret message. After that, the GA is employed to give the encoded and compressed secret message cover image coefficients. The GA is used to find the optimal mapping function for each block in the image. Lastly, the OPAP is applied to reduce the error, i.e., the difference between the cover image blocks and the stego image blocks. This step is a further improvement to the stego image quality. The proposed method was evaluated using four standard images as covers and three types of secret messages. The results demonstrate higher visual quality of the stego image with a large size of embedded secret data than what is generated by already-known techniques. The experimental results show that the information-hiding capacity of the proposed method reached to 50% with high PSNR (52.83 dB). Thus, the herein proposed hybrid image steganography method improves the quality of the stego image over those of the state-of-the-art methods.


Author(s):  
Mourad Talbi ◽  
Med Salim Bouhlel

Background: In this paper, we propose a secure image watermarking technique which is applied to grayscale and color images. It consists in applying the SVD (Singular Value Decomposition) in the Lifting Wavelet Transform domain for embedding a speech image (the watermark) into the host image. Methods: It also uses signature in the embedding and extraction steps. Its performance is justified by the computation of PSNR (Pick Signal to Noise Ratio), SSIM (Structural Similarity), SNR (Signal to Noise Ratio), SegSNR (Segmental SNR) and PESQ (Perceptual Evaluation Speech Quality). Results: The PSNR and SSIM are used for evaluating the perceptual quality of the watermarked image compared to the original image. The SNR, SegSNR and PESQ are used for evaluating the perceptual quality of the reconstructed or extracted speech signal compared to the original speech signal. Conclusion: The Results obtained from computation of PSNR, SSIM, SNR, SegSNR and PESQ show the performance of the proposed technique.


2021 ◽  
pp. 030573562098727
Author(s):  
Pedro Neto ◽  
Patricia M Vanzella

We report an experiment in which participants ( N = 368) were asked to differentiate between major and minor thirds. These intervals could either be formed by diatonic tones from the C major scale (tonal condition) or by a subset of tones from the chromatic scale (atonal condition). We hypothesized that in the tonal condition intervals would be perceived as a function of scale step distances, which we defined as the number of diatonic leaps between two notes of a given music scale. In the atonal condition, we hypothesized that intervals would be perceived as a function of cents. If our hypotheses were supported, we should verify a less accurate performance in the tonal condition, where scale step distances are the same between major and minor thirds. The data corroborated our hypotheses, and we suggest that acoustic measurements of intervallic distances (i.e., frequency ratios and cents) are not optimal when it comes to describing the perceptual quality of intervals in a tonal context. Finally, our research points to the possibility that, in comparison with previous models, scale steps and cents might better capture the notion of global versus local instances of auditory processing.


2015 ◽  
Vol 22 (4) ◽  
pp. 14-28 ◽  
Author(s):  
Jingxi Xu ◽  
Benjamin W. Wah

2016 ◽  
Vol 34 (1) ◽  
pp. 51-82 ◽  
Author(s):  
Manuela Chessa ◽  
Guido Maiello ◽  
Alessia Borsari ◽  
Peter J. Bex

Sign in / Sign up

Export Citation Format

Share Document