scholarly journals Estimation of the Noise Source Level of a Commercial Ship Using On-Board Pressure Sensors

2021 ◽  
Vol 11 (3) ◽  
pp. 1243
Author(s):  
Hongseok Jeong ◽  
Jeung-Hoon Lee ◽  
Yong-Hyun Kim ◽  
Hanshin Seol

The dominant underwater noise source of a ship is known to be propeller cavitation. Recently, attempts have been made to quantify the source strength using on-board pressure sensors near the propeller, as this has advantages over conventional noise measurement. In this study, a beamforming method was used to estimate the source strength of a cavitating propeller. The method was validated against a model-scale measurement in a cavitation tunnel, which showed good agreement between the measured and estimated source levels. The method was also applied to a full-scale measurement, in which the source level was measured using an external hydrophone array. The estimated source level using the hull pressure sensors showed good agreement with the measured one above 400 Hz, which shows potential for noise monitoring using on-board sensors. A parametric study was carried out to check the practicality of the method. From the results, it was shown that a sufficient recording time is required to obtain a consistent level at high frequencies. Changing the frequency resolution had little effect on the result, as long as enough data were provided for the one-third octave band conversion. The number of sensors affected the mid- to low-frequency data.

2018 ◽  
Vol 26 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Qiulong Yang ◽  
Kunde Yang ◽  
Shunli Duan

Sea-surface wind agitation can be considered the dominant noise sources whose intensity relies on local wind speed during typhoon period. Noise source levels in previous researches may be unappreciated for all oceanic regions and should be corrected for modeling typhoon-generated ambient noise fields in deep ocean. This work describes the inversion of wind-driven noise source level based on a noise field model and experimental measurements, and the verification of the inverted noise source levels with experimental results during typhoon period. A method based on ray approach is presented for modeling underwater ambient noise fields generated by typhoons in deep ocean. Besides, acoustic field reciprocity is utilized to decrease the calculation amount in modeling ambient noise field. What is more, the depth dependence and the vertical directionality of noise field based on the modeling method and the Holland typhoon model are evaluated and analyzed in deep ocean. Furthermore, typhoons named “Soulik” in 2013 and “Nida” in 2016 passed by the receivers deployed in the western Pacific (WP) and the South China Sea (SCS). Variations in sound speed profile, bathymetry, and the related oceanic meteorological parameters are analyzed and taken into consideration for modeling noise field. Boundary constraint simulated annealing (SA) method is utilized to invert the three parameters of noise source levels and to minimize the objective function value. The prediction results with the inverted noise source levels exhibit good agreement with the measured experiment data and are compared with predicted results with other noise sources levels derived in previous researches.


2008 ◽  
Vol 15 (6) ◽  
pp. 847-862 ◽  
Author(s):  
L. Dyrud ◽  
B. Krane ◽  
M. Oppenheim ◽  
H. L. Pécseli ◽  
J. Trulsen ◽  
...  

Abstract. Low frequency electrostatic turbulence in the ionospheric E-region is studied by means of numerical and experimental methods. We use the structure functions of the electrostatic potential as a diagnostics of the fluctuations. We demonstrate the inherently intermittent nature of the low level turbulence in the collisional ionospheric plasma by using results for the space-time varying electrostatic potential from two dimensional numerical simulations. An instrumented rocket can not directly detect the one-point potential variation, and most measurements rely on records of potential differences between two probes. With reference to the space observations we demonstrate that the results obtained by potential difference measurements can differ significantly from the one-point results. It was found, in particular, that the intermittency signatures become much weaker, when the proper rocket-probe configuration is implemented. We analyze also signals from an actual ionospheric rocket experiment, and find a reasonably good agreement with the appropriate simulation results, demonstrating again that rocket data, obtained as those analyzed here, are unlikely to give an adequate representation of intermittent features of the low frequency ionospheric plasma turbulence for the given conditions.


2019 ◽  
Vol 67 (6) ◽  
pp. 483-492
Author(s):  
Seonghyeon Baek ◽  
Iljae Lee

The effects of leakage and blockage on the acoustic performance of particle filters have been examined by using one-dimensional acoustic analysis and experimental methods. First, the transfer matrix of a filter system connected to inlet and outlet pipes with conical sections is measured using a two-load method. Then, the transfer matrix of a particle filter only is extracted from the experiments by applying inverse matrices of the conical sections. In the analytical approaches, the one-dimensional acoustic model for the leakage between the filter and the housing is developed. The predicted transmission loss shows a good agreement with the experimental results. Compared to the baseline, the leakage between the filter and housing increases transmission loss at a certain frequency and its harmonics. In addition, the transmission loss for the system with a partially blocked filter is measured. The blockage of the filter also increases the transmission loss at higher frequencies. For the simplicity of experiments to identify the leakage and blockage, the reflection coefficients at the inlet of the filter system have been measured using two different downstream conditions: open pipe and highly absorptive terminations. The experiments show that with highly absorptive terminations, it is easier to see the difference between the baseline and the defects.


2020 ◽  
Vol 19 (3-5) ◽  
pp. 191-206
Author(s):  
Trae L Jennette ◽  
Krish K Ahuja

This paper deals with the topic of upper surface blowing noise. Using a model-scale rectangular nozzle of an aspect ratio of 10 and a sharp trailing edge, detailed noise contours were acquired with and without a subsonic jet blowing over a flat surface to determine the noise source location as a function of frequency. Additionally, velocity scaling of the upper surface blowing noise was carried out. It was found that the upper surface blowing increases the noise significantly. This is a result of both the trailing edge noise and turbulence downstream of the trailing edge, referred to as wake noise in the paper. It was found that low-frequency noise with a peak Strouhal number of 0.02 originates from the trailing edge whereas the high-frequency noise with the peak in the vicinity of Strouhal number of 0.2 originates near the nozzle exit. Low frequency (low Strouhal number) follows a velocity scaling corresponding to a dipole source where as the high Strouhal numbers as quadrupole sources. The culmination of these two effects is a cardioid-shaped directivity pattern. On the shielded side, the most dominant noise sources were at the trailing edge and in the near wake. The trailing edge mounting geometry also created anomalous acoustic diffraction indicating that not only is the geometry of the edge itself important, but also all geometry near the trailing edge.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magdalena Janc ◽  
Mariola Sliwinska-Kowalska ◽  
Piotr Politanski ◽  
Marek Kaminski ◽  
Magdalena Jozefowicz-Korczynska ◽  
...  

AbstractThe aim of our study was to validate the method of head-shake static posturography (HS-posturography) in healthy individuals and to establish the value of this novel method in the diagnostics of patients with unilateral vestibular lesion (UV). The study included 202 participants divided into two groups, one consisting of 133 patients with canal paresis CP > 19% and one of 69 healthy subjects. Participant was tested according to the standard protocol of static posturography (SP), and with head movements of 0.3 Hz (HS 40), 0.6 Hz (HS 70) in random order controlled by a metronome. HS-posturography revealed a similar repeatability and internal consistency as the standard posturography. In patients with UV, 4th condition revealed higher sensitivity (74%) and specificity (71%) in HS 40 than in the standard posturography (67%, 65% respectively) and HS 70 (54%, 70% respectively). Static posturography and HS- posturography revealed a high reliability of the testing method. The head movements added to static posturography improve the sensitivity and specificity of the method in group with vestibular impairment. The most important test for that purpose seems to be the one on unstable surface with the eyes closed, with low frequency of head movements.


2012 ◽  
Vol 140 (8) ◽  
pp. 2628-2646 ◽  
Author(s):  
Shu-Chih Yang ◽  
Eugenia Kalnay ◽  
Brian Hunt

Abstract An ensemble Kalman filter (EnKF) is optimal only for linear models because it assumes Gaussian distributions. A new type of outer loop, different from the one used in 3D and 4D variational data assimilation (Var), is proposed for EnKF to improve its ability to handle nonlinear dynamics, especially for long assimilation windows. The idea of the “running in place” (RIP) algorithm is to increase the observation influence by reusing observations when there is strong nonlinear error growth, and thus improve the ensemble mean and perturbations within the local ensemble transform Kalman filter (LETKF) framework. The “quasi-outer-loop” (QOL) algorithm, proposed here as a simplified version of RIP, aims to improve the ensemble mean so that ensemble perturbations are centered at a more accurate state. The performances of LETKF–RIP and LETKF–QOL in the presence of nonlinearities are tested with the three-variable Lorenz model. Results show that RIP and QOL allow LETKF to use longer assimilation windows with significant improvement of the analysis accuracy during periods of high nonlinear growth. For low-frequency observations (every 25 time steps, leading to long assimilation windows), and using the optimal inflation, the standard LETKF RMS error is 0.68, whereas for QOL and RIP the RMS errors are 0.47 and 0.35, respectively. This can be compared to the best 4D-Var analysis error of 0.53, obtained by using both the optimal long assimilation windows (75 time steps) and quasi-static variational analysis.


Author(s):  
O. Adamidis ◽  
G. S. P. Madabhushi

Loosely packed sand that is saturated with water can liquefy during an earthquake, potentially causing significant damage. Once the shaking is over, the excess pore water pressures that developed during the earthquake gradually dissipate, while the surface of the soil settles, in a process called post-liquefaction reconsolidation. When examining reconsolidation, the soil is typically divided in liquefied and solidified parts, which are modelled separately. The aim of this paper is to show that this fragmentation is not necessary. By assuming that the hydraulic conductivity and the one-dimensional stiffness of liquefied sand have real, positive values, the equation of consolidation can be numerically solved throughout a reconsolidating layer. Predictions made in this manner show good agreement with geotechnical centrifuge experiments. It is shown that the variation of one-dimensional stiffness with effective stress and void ratio is the most crucial parameter in accurately capturing reconsolidation.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1703
Author(s):  
Michael Coja ◽  
Leif Kari

A waveguide model for a pre-compressed cylindrical natural rubber vibration isolator is developed within a wide frequency range—20 to 2000 Hz—and for a wide pre-compression domain—from vanishing to the maximum in service, that is 20%. The problems of simultaneously modeling the pre-compression and frequency dependence are solved by applying a transformation of the pre-compressed isolator into a globally equivalent linearized, homogeneous, and isotropic form, thereby reducing the original, mathematically arduous, and complex problem into a vastly simpler assignment while using a straightforward waveguide approach to satisfy the boundary conditions by mode-matching. A fractional standard linear solid is applied as the visco-elastic natural rubber model while using a Mittag–Leffler function as the stress relaxation function. The dynamic stiffness is found to depend strongly on the frequency and pre-compression. The former is resulting in resonance phenomena such as peaks and troughs, while the latter exhibits a low-frequency magnitude stiffness increase in addition to peak and trough shifts with increased pre-compressions. Good agreement with nonlinear finite element results is obtained for the considered frequency and pre-compression range in contrast to the results of standard waveguide approaches.


Sign in / Sign up

Export Citation Format

Share Document